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Neutron stars •3 main layers: 1. Outer crust 
2. Inner crust 
3. Core

N. Chamel and P. Hansel, 

Liv. Rev. Rel.11,10, 2008

•Surface:  Fe, P=0
•Outer crust: Neutron rich nuclei embedded in electron sea
• Inner crust: Above neutron drip density, nucleons form geometrical 
structures (non-spherical: pasta phases) embedded in neutron and 
electron background gas. 

• Core: Uniform matter, in the centre exotic matter may exist.  

• NS: catalized cold stellar matter:
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R~10 km; M~1.5 M⊙

check eg N. K. Glendenning, Compact Stars: Nuclear Physics, 
Particle Physics, and General Relativity (Springer, 2000)



Where do these clusters form?
in http://essayweb.net/astronomy/blackhole.shtml

NS mergers

scenarios where light and heavy clusters are important:
supernovae, NS mergers, (crust of) neutron stars

in https://www.ligo.org/detections/GW170817.php 
Credit: Soares-Santos et al. and DES Collab
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How do these clusters affect the 
star?

• They influence supernova properties: the clusters can 
modify the neutrino transport, affecting the cooling of 
the proto-neutron star.

•These clusters may also affect the cooling of binary 
and accreting systems. 

•Magnetars (neutron stars with very strong magnetic 
fields) may have an inner crust even more complex.
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Describing neutron stars

⇢ T
P (E)

Prescription:

Problem:Which phenomenological  
EoS to choose?

Solution: Need Constraints (Experiments, Microscopic 
calculations, Observations)

Many EoS models in literature: Phenomenological models (parameters are 
fitted to nuclei properties): RMF, Skyrme…  

P.B. Demorest et al, Nature 467, 1081, 2010

1.EoS:           for a system at given       
       and 

2.Compute TOV equations 
3.Get star M(R) relation 

5
check e.g PRC 85, 035201 (2012), PRC 90, 055203 (2014)

check CompOSE: 
https://compose.obspm.fr/
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suggest a positive correlation between L and J . In the
context of density functional theory, such a positive cor-
relation is easy to understand. Using Eq.(3) at e⇢

0
yields

S(e⇢
0
) = J � L

9
! J ⇡

✓
26MeV +

L

9

◆
. (6)

The value of S(e⇢
0
)⇡26MeV [22] follows because the sym-

metry energy at e⇢
0
is tightly constrained by the binding

energy of heavy nuclei. The PREX-II inferred value for L
yields a corresponding value of J=(37.7±4.1)MeV, that
is entirely consistent with the limit obtained in Eq.(5).
Although consistent at the 2� level, the “Intersection”
region in Fig. 2 obtained from a variety of experimental
and theoretical approaches lies outside the 1� PREX-II
limits.
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quantum chromodynamics, c2sðn ≫ 50n0Þ ¼ 1

3 [63]. The
uncertainties, however, are sizeable at the maximum
density: c2sð2n0Þ ≃ 0.14$ 0.08 (N2LO) and c2sð2n0Þ ≃
0.10$ 0.07 (N3LO). Precise measurements of neutron
stars with mass ≳2 M⊙ [64–67] indicate that the limit
has to be exceeded in some density regime beyond n0 [68].
Our 2σ uncertainty bands are consistent with this happen-
ing slightly above 2n0, especially since the downward turn
of c2s (n ≳ 0.28 fm−3) is likely an edge effect that will
disappear if we train on data at even higher densities.
Comparison to experiment.—Figure 2 depicts con-

straints in the Sv–L plane. The allowed region we derive
from χEFT calculations of infinite matter is shown as
the yellow ellipses (dark: 1σ, light: 2σ) and denoted
“GP-B” (Gaussian process–BUQEYE collaboration).
Also shown are several experimental and theoretical con-
straints compiled by Lattimer et al. [69–71]. The experi-
mental constraints include measurements of isoscalar giant
dipole resonances, dipole polarizabilities, and neutron-skin
thicknesses (see the caption for details). The white area
depicts the intersection of all these (excluding that from
isobaric analog states and isovector skins, which barely
overlaps). This region is in excellent agreement with our
prediction.
Our yellow ellipses in Fig. 2 represent the posterior

prðSv; L jDÞ, where the training data D are the order-by-
order predictions of ðE=NÞðnÞ and ðE=AÞðnÞ up to 2n0.
The distribution is accurately approximated by a two-
dimensional Gaussian with mean and covariance

!
μSv
μL

"
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59.8

"
and Σ ¼

!
1.112 3.27

3.27 4.122

"
: ð5Þ

We consider all likely values of n0 via prðSv; L jDÞ ¼R
prðS2; L j n0;DÞprðn0 jDÞdn0. Here, prðS2; L j n0;DÞ

describes the correlated to-all-orders predictions at a par-
ticular density n0, and prðn0 jDÞ ≈ 0.17$ 0.01 fm−3 is the
Gaussian posterior for the saturation density, including
truncation errors, determined in Ref. [28]. If the canonical
empirical saturation density, n0 ¼ 0.164 fm−3, is used
instead the posterior mean shifts slightly downwards: Sv →
Sv − 0.8 MeV and L → L − 1.4 MeV. This shift is well
within the uncertainties computed using our internally
consistent n0. In contrast to experiments, which extract
Sv–L from measurements over a range of densities, our
theoretical approach predicts directly at saturation density,
thereby removing artifacts induced by extrapolation.
Our 2σ ellipse falls completely within constraints

derived from the conjecture that the unitary gas is a lower
limit on the EOS [69] (solid black line). The same work
also made additional simplifying assumptions to derive an
analytic bound—only our 1σ ellipse is fully within that
region (dashed black line). Figure 2 also shows the allowed
regions obtained from microscopic neutron-matter
calculations by Hebeler et al. [79] (based on χEFT NN

and 3N interactions fit to few-body data only) and Gandolfi
et al. [80] (where 3N interactions were adjusted to a range
of Sv). The predicted ranges in Sv agree with ours, but we
find that L is ≈10 MeV larger, corresponding to a stronger
density-dependence of S2ðn0Þ. References [79,80] quote
relatively narrow ranges for Sv–L, but those come from
surveying available parameters in the Hamiltonians and so,
unlike our quoted intervals, do not have a statistical
interpretation.
Summary and outlook.—We presented a novel frame-

work for EFT truncation errors that includes correlations

FIG. 2. Constraints on the Sv–L correlation. Our results
(“GP–B”) are given at the 68% (dark-yellow ellipse) and 95%
level (light-yellow ellipse). Experimental constraints are derived
from heavy-ion collisions (HIC) [72], neutron-skin thicknesses of
Sn isotopes [73], giant dipole resonances (GDR) [74], the dipole
polarizability of 208Pb [75,76], and nuclear masses [77]. The
intersection is depicted by the white area, which only barely
overlaps with constraints from isobaric analog states and iso-
vector skins (IASþ ΔR) [78]. In addition, theoretical constraints
derived from microscopic neutron-matter calculations by
Hebeler et al. (H) [79] and Gandolfi et al. (G) [80] as well as
from the unitary gas (UG) limit by Tews et al. [69]. The figure has
been adapted from Refs. [70,71]. A Jupyter notebook that
generates it is provided in Ref. [42].
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FIG. 2: (Color online). Constraints on the J–L correlation
obtained from a variety of experimental and theoretical ap-
proaches. The figure was adapted from Refs. [11, 33] and no-
ticeably displays the tension with the recent PREX-II result.

Next, we explore the impact of PREX-II on a few
neutron-star observables. We start by displaying in Fig. 3
the minimum central density and associated neutron star
mass required for the onset of the direct Urca process.
Neutron stars are born very hot (T ' 1011K ' 10MeV)
and then cool rapidly via neutrino emission through the
direct Urca process that involves neutron beta decay fol-
lowed by electron capture:

n ! p+ e� + ⌫̄e, (7a)

p+ e� ! n+ ⌫e. (7b)

After this rapid cooling phase is completed, neu-
trino emission proceeds in the standard cooling scenario
through the modified Urca process—a process that may

0.15 0.2 0.25 0.3 0.35
Rskin (fm)

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

D
U

rc
a 

Th
re

sh
ol

d

ρ
★

(fm-3)
Μ★/Msun

-0.982
-0.982

-0.987

PREX-II

FIG. 3: (Color online). Direct Urca thresholds for the onset
of enhanced cooling in neutron stars. The threshold density is
depicted by the lower blue line and the corresponding stellar
mass for such a central density with the upper green line.
The shaded area represents PREX-II 1� confidence region.
For each of these two quantities, the best-fit line is displayed
together with their associated correlation coe�cients.

be millions of times slower as it requires the presence
of a bystander nucleon to conserve momentum at the
Fermi surface[34]. The transition into the much slower
modified Urca process is solely based on the expectation
that the proton fraction in the stellar core is too low
to conserve momentum at the Fermi surface. However,
given that the proton fraction is controlled by the poorly
known density dependence of the symmetry energy [35],
the minimal cooling scenario may need to be revisited.
In particular, a sti↵ symmetry energy—as suggested by
PREX-II—favors large proton fractions that may trigger
the onset of the direct Urca process at lower central densi-
ties. This analysis is particularly timely given that x-ray
observations suggest that some neutron stars may require
some form of enhanced cooling. Indeed, the detected x-
ray spectrum of the neutron star in the low-mass x-ray
binary MXB 1659-29 strongly suggests the need for a fast
neutrino-cooling process [36]. For a comprehensive re-
port that explores the interplay between the direct Urca
process and nucleon superfluidity in transiently accreting
neutron stars, see Ref. [37]. The shaded area in Fig. 3 dis-
plays the region constrained by PREX-II. In particular,
the 1� lower limit of Rskin=0.212 fm suggests a threshold
mass for the onset of direct Urca cooling of M?⇡1.45M

�

and a corresponding central density of ⇢? ⇡ 0.42 fm�3.
However, if instead one adopts the larger PREX-II cen-
tral value of Rskin =0.283 fm, then one obtains the con-
siderably lower threshold values of M? ⇡ 0.85M

�

and
⇢?⇡0.24 fm�3, or a threshold density just slightly higher
than saturation density. Although some stars are likely
to require enhanced cooling, observations of many iso-

EoS Constraints •Terrestrial Experiments:

B.T. Reed et al, PRL 126, 172503 
(2021)
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• PREXII (Adhikari et al, PRL, 126, 172502 (2021):

Rn-Rp(208Pb)=0.283 ± 0.071 fm.

-Reed et al, PRL 126, 172503 (2021): L = 106 ± 37 MeV;

-Yue et al, arXiv:2102.05267, L = 85.5 ± 22.2 MeV;

-Essick et al, arXiv:2102.10074 (accepted in PRL), 

L = 58 ± 19 MeV.

Also Reinhard et al, arXiv:2105.15050, start from Apv 
and get r(skin)=0.19±0.02 fm, with L = 54 ± 8 MeV.


• Spectra of charged pions (Estee et al, PRL 126, 
162701 (2021)): 42<L<117MeV.


• VEoS: only depends on exp. B and scattering phase 
shifts. Correct zero-density limit for finite T EoS.

• Kc from HIC: cluster formation observed in HIC.



EoS Constraints •Astrophysical Observations:
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• GW170817 from NS-NS (Abbott et al, 
PRL 119, 161101 (2017) followed up by 
GRB170817A and AT2017gfo.


Others followed:

• GW190425 (Abbott et al, ApJL 892, L3 

(2020): largest NS binary known to date 

• GW190814 (Abbott et al, ApJL 896, L44 

(2020): BH+2.5-2.6Msun object (not 
ruled out yet to be NS).


• NASA’s Neutron star Interior Composition 
Explorer (NICER), a soft X-ray telescope 
in ISS:


•  PSR J0030+0451: 

-Riley et al, ApJL 887, L21 (2019): 

M=                 , R= 

-Miller et al, ApJL 887, L24 (2019):

M=                 ; R=

• PSR J0740+6620:

-Riley et al, arXiv:2105.06980:

M=                  ; R=
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ABSTRACT

We report on Bayesian parameter estimation of the mass and equatorial radius of the millisecond
pulsar PSR J0030+0451, conditional on pulse-profile modeling of Neutron Star Interior Composition
Explorer X-ray spectral-timing event data. We perform relativistic ray-tracing of thermal emission
from hot regions of the pulsar’s surface. We assume two distinct hot regions based on two clear pulsed
components in the phase-folded pulse-profile data; we explore a number of forms (morphologies and
topologies) for each hot region, inferring their parameters in addition to the stellar mass and radius. For
the family of models considered, the evidence (prior predictive probability of the data) strongly favors
a model that permits both hot regions to be located in the same rotational hemisphere. Models
wherein both hot regions are assumed to be simply-connected circular single-temperature spots, in
particular those where the spots are assumed to be reflection-symmetric with respect to the stellar
origin, are strongly disfavored. For the inferred configuration, one hot region subtends an angular
extent of only a few degrees (in spherical coordinates with origin at the stellar center) and we are
insensitive to other structural details; the second hot region is far more azimuthally extended in the
form of a narrow arc, thus requiring a larger number of parameters to describe. The inferred mass M
and equatorial radius Req are, respectively, 1.34+0.15

�0.16 M� and 12.71+1.14
�1.19 km, whilst the compactness

GM/Reqc
2 = 0.156+0.008

�0.010 is more tightly constrained; the credible interval bounds reported here are
approximately the 16% and 84% quantiles in marginal posterior mass.
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2 Miller, Lamb, Dittmann, et al.

plorer (NICER). This approach is thought to be less subject to systematic errors than
other approaches for estimating neutron star radii. We explored a variety of emission
patterns on the stellar surface. Our best-fit model has three oval, uniform-temperature
emitting spots and provides an excellent description of the pulse waveform observed us-
ing NICER. The radius and mass estimates given by this model are Re = 13.02+1.24

�1.06 km
and M = 1.44+0.15

�0.14 M� (68%). The independent analysis reported in the companion
paper by Riley et al. explores di↵erent emitting spot models, but finds spot shapes
and locations and estimates of Re and M that are consistent with those found in this
work. We show that our measurements of Re and M for PSR J0030+0451 improve the
astrophysical constraints on the EoS of cold, catalyzed matter above nuclear saturation
density.

Keywords: dense matter — equation of state — neutron star — X-rays: general

1. INTRODUCTION

A key current goal of nuclear physics is to understand the properties of cold catalyzed matter above
the saturation density of nuclear matter. Matter at these densities cannot be studied in terrestrial
laboratories. Hence observations of neutron stars—which contain large quantities of such matter—
play a key role (see, e.g., Lattimer & Prakash 2007). Over the last few years, the discovery of several
high-mass neutron stars (Demorest et al. 2010; Antoniadis et al. 2013; Arzoumanian et al. 2018b;
Cromartie et al. 2019) and measurement of the binary tidal deformability during a neutron star
merger (Abbott et al. 2017, 2018; De et al. 2018) have advanced our knowledge of the properties of
cold dense matter, but precise and reliable measurements of neutron star radii would significantly
improve our understanding.
Various radius estimates have been made using models of the X-ray emission from quiescent neutron

stars (see Steiner et al. 2018 for a recent summary), from neutron stars during thermonuclear X-ray
bursts (see Steiner et al. 2010; Özel et al. 2016; and Nättilä et al. 2017 for di↵erent perspectives),
and from accretion-powered millisecond pulsars (see Salmi et al. 2018), with inferred radii typically
ranging from ⇠ 10 km to ⇠ 14 km, consistent with most theoretical predictions. However, these
estimates are susceptible to significant systematic errors, in the sense that a model could provide a
formally good fit to the data but yield a credible interval for the radius that strongly excludes the
true value (Miller 2013; Miller & Lamb 2016).
In contrast, analyses of the soft X-ray pulse waveforms observed using the Neutron Star Interior

Composition Explorer (NICER) are expected to be less susceptible to systematic errors. Analyses
of synthetic waveforms carried out prior to the launch of NICER showed that, for the cases consid-
ered, using model assumptions di↵erent from the true situation (e.g., di↵erent emission or beaming
patterns, di↵erent spectra, or di↵erent surface temperature distributions) did not significantly bias
parameter estimates, provided the fit was formally good (Lo et al. 2013; Miller & Lamb 2015). Sim-
ple pulse waveform models have previously been fit to the soft X-ray waveforms of rotation-powered
pulsars observed using ROSAT and the Extreme Ultraviolet Explorer (EUVE ; Pavlov & Zavlin 1997;
Zavlin & Pavlov 1998) and XMM-Newton (see, e.g., Bogdanov et al. 2007, 2008; Bogdanov 2013).
These fits gave estimates for the radii of these pulsars that were consistent with the expected range
of neutron-star radii, but the number of counts available was too small to obtain tight constraints.

2 Miller, Lamb, Dittmann, et al.
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Cromartie et al. 2019) and measurement of the binary tidal deformability during a neutron star
merger (Abbott et al. 2017, 2018; De et al. 2018) have advanced our knowledge of the properties of
cold dense matter, but precise and reliable measurements of neutron star radii would significantly
improve our understanding.
Various radius estimates have been made using models of the X-ray emission from quiescent neutron

stars (see Steiner et al. 2018 for a recent summary), from neutron stars during thermonuclear X-ray
bursts (see Steiner et al. 2010; Özel et al. 2016; and Nättilä et al. 2017 for di↵erent perspectives),
and from accretion-powered millisecond pulsars (see Salmi et al. 2018), with inferred radii typically
ranging from ⇠ 10 km to ⇠ 14 km, consistent with most theoretical predictions. However, these
estimates are susceptible to significant systematic errors, in the sense that a model could provide a
formally good fit to the data but yield a credible interval for the radius that strongly excludes the
true value (Miller 2013; Miller & Lamb 2016).
In contrast, analyses of the soft X-ray pulse waveforms observed using the Neutron Star Interior

Composition Explorer (NICER) are expected to be less susceptible to systematic errors. Analyses
of synthetic waveforms carried out prior to the launch of NICER showed that, for the cases consid-
ered, using model assumptions di↵erent from the true situation (e.g., di↵erent emission or beaming
patterns, di↵erent spectra, or di↵erent surface temperature distributions) did not significantly bias
parameter estimates, provided the fit was formally good (Lo et al. 2013; Miller & Lamb 2015). Sim-
ple pulse waveform models have previously been fit to the soft X-ray waveforms of rotation-powered
pulsars observed using ROSAT and the Extreme Ultraviolet Explorer (EUVE ; Pavlov & Zavlin 1997;
Zavlin & Pavlov 1998) and XMM-Newton (see, e.g., Bogdanov et al. 2007, 2008; Bogdanov 2013).
These fits gave estimates for the radii of these pulsars that were consistent with the expected range
of neutron-star radii, but the number of counts available was too small to obtain tight constraints.

2 Riley et al.

Photon Imaging Camera spectroscopic event data to inform our X-ray likelihood function. The prior
support of the pulsar radius is truncated at 16 km to ensure coverage of current dense matter models.
We assume conservative priors on instrument calibration uncertainty. We constrain the equatorial ra-
dius and mass of PSR J0740+6620 to be 12.39+1.30

�0.98 km and 2.072+0.067
�0.066 M� respectively, each reported

as the posterior credible interval bounded by the 16% and 84% quantiles, conditional on surface hot
regions that are non-overlapping spherical caps of fully-ionized hydrogen atmosphere with uniform
e↵ective temperature; a posteriori, the temperature is log10(T [K]) = 5.99+0.05

�0.06 for each hot region.
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The nature of supranuclear density matter, as found
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states of strange matter in the form of hyperons or
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the dense matter Equation of State (the EOS, a func-
tion of both composition and inter-particle interactions)
is to measure neutron star masses and radii (Lattimer
& Prakash 2016; Özel & Freire 2016). There are several
possible methods, but in this Letter we focus on pulse-
profile modeling (see Watts et al. 2016; Watts 2019, and
references therein). This requires precise phase-resolved
spectroscopy, a technique that motivated the design and
development of NASA’s Neutron Star Interior Compo-
sition Explorer (NICER).
The NICER X-ray Timing Instrument (XTI) is a pay-

load installed on the International Space Station. The
primary observations carried out by NICER are order
megasecond exposures of rotation-powered X-ray mil-
lisecond pulsars (MSPs) that may be either isolated or
in a binary system (Bogdanov et al. 2019a). Surface X-
ray emission from the heated magnetic poles propagates
to the NICER XTI through the curved spacetime of the
pulsar, and the compactness a↵ects the signal registered
by the instrument. However, these pulsars also spin at
relativistic rates. So with a precisely measured spin
frequency derived from radio timing and high-quality
spectral-timing event data, we are also sensitive to rota-
tional e↵ects on surface X-ray emission, and therefore to
the radius of the pulsar independent of the compactness
(see Bogdanov et al. 2019b, and references therein).

The first joint mass and radius inferences conditional1

on pulse-profile modeling of NICER observations of a
MSP were reported by Miller et al. (2019) and Riley
et al. (2019).
The target was PSR J0030+0451, an isolated2 source

spinning at approximately 205 Hz. Being isolated, the
radio timing model for this MSP has no dependence
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an MSP in a binary. This meant that a wide prior on
the mass had to be assumed in the pulse-profile mod-
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the data set in terms of the number of pulsed counts -
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& Scha↵ner-Bielich 2020; Xie & Li 2021; Blaschke et al.
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EoS Constraints

•Microscopic calculations

S. Gandolfi et al,  
PRC 85, 032801, 2012 

K. Hebeler et al,  
Astrophys. J. 773,11, 2013
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EoS Constraints
In a near future: 


9

• ATHENA, an X-ray high-precision determination observatory for NS mass and 
radius to be launched in 2028. 


• New data on NS systems will heavily increase when SKA, the world's largest 
radio telescope, will be in full power. 


• The radio telescope FAST has started operating, and will give information on 
the NS mass. 


• The Einstein Telescope (ET), an underground infrastructure to host a 3G 
gravitational-wave observatory, foresees the beginning of construction in 2026 
with the goal to start observations in 2035…


• …


• On the experimental side, FAIR will put more constraints on the high-density 
behaviour of nuclear matter.


• CREX should release results soon…

• Results of INDRA-FAZIA experiment (see talk today by Caterina Ciampi).

• …




• The SN EoS should incorporate: all relevant clusters, (mean-field) 
interaction between nucleons and clusters, and a suppression 
mechanism of clusters at high densities.


•Different methods: nuclear statistical equilibrium, quantum statistical 
approach, and


•RMF approach: clusters as new degrees of freedom, with effective 
mass dependent on density.


• In-medium effects: cluster interaction with medium described via the 
meson couplings, or effective mass shifts, or both


•Constrains are needed to fix the couplings:

low densities: Virial EoS

high densities: cluster formation has been measured in HIC


Supernova EoS with light clusters

10



•The total baryonic density is defined as:

• The global proton fraction as

with the mass fraction of cluster i.

• Charge neutrality must be imposed:

Supernova EoS with light clusters

•The light clusters are in chemical equilibrium, with the 
chemical potential of each cluster i defined as

11



Exp Constraint: Equilibrium constants    

•In Qin et , PRL 108, 172701 (2012), Kc were calculated with 
data from HIC:  

•At the time, unique existing constraint on in-medium modifications 
of light clusters at finite T.

• This analysis was performed using ideal gas considerations.



• The temperature, proton fraction and density as a function of Vsurf, for 
the intermediate mass system.

Experimental chemical equilibrium 
constants with INDRA data  
• Experimental data includes 4He, 3He, 3H, 2H, and 6He.

• 3 experimental systems: 136Xe+124Sn, 124Xe+124Sn, and 124Xe+112Sn.

• Vsurf is the velocity of 
the emitted particles at 
the nuclear surface, so 
fastest particles 
correspond to earliest 
emission times.

R. Bougault et al, for the INDRA collab, 
J. Phys. G 47, 025103 (2020)
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PRL 125, 012701 (2020); 
J.Phys.G 47, 105204 (2020)



Experimental determination of 
chemical equilibrium constants   

• Since we are in 
thermodynamical 
equilibrium, the free 
volume calculated for each 
one of the clusters should 
be the same! 

• This is not surprising because we are using an expression for the 
volume where we consider an ideal gas of classical clusters..

• But they aren’t….

• Weak point: T and density are NOT directly measured, but deduced 
from experimental multiplicities, using analytical expressions that 
assume the physics of an ideal gas…
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FIG. 1. System 124Xe+124Sn: The chemical equilibrium con-
stants of each cluster as a function of the surface velocity vs.
The error bars only include statistical and systematic exper-
imental errors, see ref.[1]. The solid lines are the ideal gas
limit given by eq.(20). The brown band shows the area where
data might be contaminated.

binding energies BAZ , which is in contradiction with the
very purpose of the analysis. Moreover, if in medium
corrections were indeed negligible, the measured chemi-
cal constants would agree with the ideal gas prediction.
This latter can be easily worked out from Eq.(1) consid-
ering that, for an ideal gas of clusters, ⇢AZ = ANAZ/Vf ,
with NAZ given by Eq.(16):

Kid
c (A,Z) = A

✓
2⇡~2
T

◆ 3(A�1)

2

✓
MAZ

mA

◆3/2 (2JAZ + 1)

2A

exp


BAZ

T

�
. (20)

Chemical constants obtained from the analysis of the
124Xe+124Sn system are displayed in Fig. 1. The only dif-
ference with respect to the results published in Ref. [1]
is the slightly di↵erent expression for the temperature
Eq.(17), which however does not produce any e↵ect on
the scale of the figure. The error bars are due to the
experimental errors associated with the measurements.
The solid lines represent the ideal gas limit, given by
eq.(20). The brown band shows the range where the ex-
perimental data might be contaminated, since the proton
spectra is not well reproduced by the fit in order to de-
duce the mass of the evolving source. Therefore, we will
not show in the Figures of the next sections the data
below vsurf = 4 cm/ns.

We can see that the measured chemical constants are
systematically lower than this limit, and the e↵ect in-
creases with increasing density, showing that binding en-
ergy shifts are necessary. A qualitatively similar devia-
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FIG. 2. System 124Xe+124Sn: The volumes of the clusters as
a function of Vsurf . The brown band shows the area where
data might be contaminated.

tion from the ideal gas limit was also found in NIMROD
data [8, 10].

It is therefore clear that a correction is needed to Eq.(6)
for the analysis to be consistent. If in-medium corrections
at a given temperature and density only depend on the
baryonic number of the particle, then their e↵ect will
cancel out when taking isobaric ratios and double ratios
as in Eqs.(11) and (17). However, this is not the case for

the volume V
(AZ)
f , Eq.(12), which in turn a↵ects both

the evaluation of the densities ⇢AZ and the evaluation of
the total baryonic density ⇢B .

The need of an in-medium correction to the ideal gas
expression Eq.(12) is further shown by Fig. 2. This
figure displays the value of the free volume obtained
from Eq.(12) as a function of the sorting variable vs for
the 136Xe+124Sn, using di↵erent particle species. Since
a vs bin represents a specific thermodynamic condition
(⇢B , T, yp), if everything was consistent, we should find
the same volume whatever the cluster species considered,
which is clearly not the case except for the A = 3 iso-
bars, which lead to identical volume estimations. Quali-
tatively similar results were obtained with the NIMROD
data [10], showing that the incompatibility among the
di↵erent volume estimations is not an experimental prob-
lem, but it rather points towards an inconsistency in the
analysis method.

To solve this inconsistency, in the next section we in-
troduce a modification in Eq.(6) allowing for possible in-
medium e↵ects.



Considering in-medium effects   

• We should take into account the interactions between clusters:

•       depends on temperature T, number of clusters Ai, and isospin Ii.

• How to solve this problem? 

2

Under well-defined thermodynamic conditions, as
given by the temperature T , total baryon density ⇢B

and proton fraction yp, equilibrium chemical constants
Kc(A,Z) of a cluster of mass (charge) number A (Z),
are defined in terms of particle densities ⇢AZ , or of mass
fractions !AZ as :

Kc(A,Z) =
⇢AZ

⇢
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An experimental measurement of such constants requires
the detection of particles and clusters from a statistical
ensemble of sources, and an estimation of the associated
thermodynamic parameters (T, ⇢B , yp).

Under the assumption that chemical equilibrium holds
at the di↵erent time steps of the emission from the ex-
panding source produced in central 136,124Xe+124,112Sn
collisions detected with the INDRA apparatus [10], the
Coulomb corrected particle velocity vsurf in the source
frame can be used to select statistical ensembles of parti-
cles corresponding to di↵erent emission times, and there-
fore di↵erent thermodynamic conditions [11]. A detailed
comparison between the four di↵erent reactions was per-
formed in Ref. [12], verifying the statistical character of
the emission. A strong argument confirming the crucial
hypothesis of chemical equilibrium as a function of time
was given in Ref. [10], observing that the extracted ther-
modynamic parameters as a function of vsurf are inde-
pendent of the entrance channel of the reaction.

The detected multiplicities YAZ(vsurf ) allow a direct
experimental determination of the mass fractions as well
as of the total source mass AT (t) as a function of the
emission time, but the measurement of the baryonic
density ⇢B(t) = AT /VT additionally requires an esti-
mation of the source volume, at the di↵erent times of
the expansion. This latter is given by the free volume
Vf with the addition of the proper volume VAZ of the
clusters which belong to the source at a given time,
VT = Vf +

P
AZ VAZ!AZAT /A.

The free volume can be extracted from the di↵erential
cluster spectra ỸAZ(~p) = YAZ(vsurf )/(4⇡p2�p), which
can be related to di↵erential cluster densities as ⇢AZ(~p) =
AỸAZ(~p)/Vf , after a correction from the Coulomb boost
[10, 11]. Supposing an ideal gas of classical clusters with
binding energies BAZ in thermodynamic equilibrium at
temperature T in the grand-canonical ensemble, the dif-
ferential mass densities read:

⇢
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AZ(~p) =

A

h
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gAZ exp


1

T
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BAZ � p
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2MAZ
+ Zµp +Nµn

◆�
,

(2)
with MAZ = Am � BAZ , gAZ = 2SAZ + 1 the mass
and spin degeneracy of cluster (A,Z), and m the nu-
cleon mass. In-medium e↵ects are expected to suppress
the cluster densities [7], with respect to the ideal gas limit
given by eq.(2), ⇢AZ = CAZ⇢

id
AZ , where the in-medium

correction CAZ < 1 can depend on the thermodynamic
conditions, the cluster species and their momentum [7]. If
we normalize the cluster spectrum by the proton and neu-
tron spectra at the same velocity, the unknown chemical
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FIG. 1. (Color online) System 136Xe+124Sn: free volume es-
timated from the di↵erent clusters as a function of vsurf from
Eq. (3). Lines: ideal gas limit CAZ = 1. Symbols: bayesian
determination of the in-medium correction (see text). The
grey band shows the velocity domain where data might be
polluted by spectator decay according to Ref. [10].

potentials µn,p cancel, and the free volume Vf can be in-
dependently estimated from the di↵erent cluster species
as:

Vf = R
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np CAZ exp
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where the free neutron-proton ratio Rnp is estimated
from the multiplicities of the A = 3 isobars , Rnp =
(Y

31

/Y

32

) exp [(B
32

�B

31

)/T ].
The presence of in-medium corrections is clearly con-

firmed by the experimental data, as shown by Fig. 1,
which displays the value of the free volume obtained from
Eq. (3) as a function of the sorting variable vsurf for the
136Xe+124Sn system, using di↵erent particle species. A
clear hierarchy is observed as a function of the cluster
mass if CAZ = 1 is assumed, corresponding to the ideal
gas limit. It is clear from Eq. (3) that to have consis-
tent estimations of the volume, the deuteron requires a
more important correction with respect to the heavier
He isotopes. The deviations from the di↵erent volume
estimations, when we suppose CAZ = 1, increase with
decreasing vsurf , showing that the in-medium e↵ects ad-
ditionally depend on the thermodynamic conditions.
These considerations lead to the following parametriza-

tion for the in-medium correction:

CAZ = exp


�a

1

A

a
2 + a

3

|I|a4

THHe(A� 1)

�
, (4)

where the temperature is estimated through the iso-
baric double isotope ratio Albergo formula [13], and it
is indicated as THHe. The unknown parameters ~a =
{ai(⇢B , yp, T ), i = 1� 4} are taken as random variables,
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decreasing vsurf , showing that the in-medium e↵ects ad-
ditionally depend on the thermodynamic conditions.
These considerations lead to the following parametriza-

tion for the in-medium correction:

CAZ = exp


�a

1

A

a
2 + a

3

|I|a4

THHe(A� 1)

�
, (4)

where the temperature is estimated through the iso-
baric double isotope ratio Albergo formula [13], and it
is indicated as THHe. The unknown parameters ~a =
{ai(⇢B , yp, T ), i = 1� 4} are taken as random variables,
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Under well-defined thermodynamic conditions, as
given by the temperature T , total baryon density ⇢B

and proton fraction yp, equilibrium chemical constants
Kc(A,Z) of a cluster of mass (charge) number A (Z),
are defined in terms of particle densities ⇢AZ , or of mass
fractions !AZ as :

Kc(A,Z) =
⇢AZ

⇢

Z
11

⇢

A�Z
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=
!AZ

!

Z
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!

A�Z
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⇢

�(A�1)

B . (1)

An experimental measurement of such constants requires
the detection of particles and clusters from a statistical
ensemble of sources, and an estimation of the associated
thermodynamic parameters (T, ⇢B , yp).

Under the assumption that chemical equilibrium holds
at the di↵erent time steps of the emission from the ex-
panding source produced in central 136,124Xe+124,112Sn
collisions detected with the INDRA apparatus [10], the
Coulomb corrected particle velocity vsurf in the source
frame can be used to select statistical ensembles of parti-
cles corresponding to di↵erent emission times, and there-
fore di↵erent thermodynamic conditions [11]. A detailed
comparison between the four di↵erent reactions was per-
formed in Ref. [12], verifying the statistical character of
the emission. A strong argument confirming the crucial
hypothesis of chemical equilibrium as a function of time
was given in Ref. [10], observing that the extracted ther-
modynamic parameters as a function of vsurf are inde-
pendent of the entrance channel of the reaction.

The detected multiplicities YAZ(vsurf ) allow a direct
experimental determination of the mass fractions as well
as of the total source mass AT (t) as a function of the
emission time, but the measurement of the baryonic
density ⇢B(t) = AT /VT additionally requires an esti-
mation of the source volume, at the di↵erent times of
the expansion. This latter is given by the free volume
Vf with the addition of the proper volume VAZ of the
clusters which belong to the source at a given time,
VT = Vf +

P
AZ VAZ!AZAT /A.

The free volume can be extracted from the di↵erential
cluster spectra ỸAZ(~p) = YAZ(vsurf )/(4⇡p2�p), which
can be related to di↵erential cluster densities as ⇢AZ(~p) =
AỸAZ(~p)/Vf , after a correction from the Coulomb boost
[10, 11]. Supposing an ideal gas of classical clusters with
binding energies BAZ in thermodynamic equilibrium at
temperature T in the grand-canonical ensemble, the dif-
ferential mass densities read:

⇢

id
AZ(~p) =

A

h

3

gAZ exp


1

T

✓
BAZ � p

2

2MAZ
+ Zµp +Nµn

◆�
,

(2)
with MAZ = Am � BAZ , gAZ = 2SAZ + 1 the mass
and spin degeneracy of cluster (A,Z), and m the nu-
cleon mass. In-medium e↵ects are expected to suppress
the cluster densities [7], with respect to the ideal gas limit
given by eq.(2), ⇢AZ = CAZ⇢

id
AZ , where the in-medium

correction CAZ < 1 can depend on the thermodynamic
conditions, the cluster species and their momentum [7]. If
we normalize the cluster spectrum by the proton and neu-
tron spectra at the same velocity, the unknown chemical

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 3  4  5  6  7

V
f (

fm
3
)

Vsurf (cm/ns)

6He
4He

2H
3He

3H

FIG. 1. (Color online) System 136Xe+124Sn: free volume es-
timated from the di↵erent clusters as a function of vsurf from
Eq. (3). Lines: ideal gas limit CAZ = 1. Symbols: bayesian
determination of the in-medium correction (see text). The
grey band shows the velocity domain where data might be
polluted by spectator decay according to Ref. [10].

potentials µn,p cancel, and the free volume Vf can be in-
dependently estimated from the di↵erent cluster species
as:

Vf = R
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where the free neutron-proton ratio Rnp is estimated
from the multiplicities of the A = 3 isobars , Rnp =
(Y

31

/Y

32

) exp [(B
32

�B

31

)/T ].
The presence of in-medium corrections is clearly con-

firmed by the experimental data, as shown by Fig. 1,
which displays the value of the free volume obtained from
Eq. (3) as a function of the sorting variable vsurf for the
136Xe+124Sn system, using di↵erent particle species. A
clear hierarchy is observed as a function of the cluster
mass if CAZ = 1 is assumed, corresponding to the ideal
gas limit. It is clear from Eq. (3) that to have consis-
tent estimations of the volume, the deuteron requires a
more important correction with respect to the heavier
He isotopes. The deviations from the di↵erent volume
estimations, when we suppose CAZ = 1, increase with
decreasing vsurf , showing that the in-medium e↵ects ad-
ditionally depend on the thermodynamic conditions.
These considerations lead to the following parametriza-

tion for the in-medium correction:

CAZ = exp
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THHe(A� 1)

�
, (4)

where the temperature is estimated through the iso-
baric double isotope ratio Albergo formula [13], and it
is indicated as THHe. The unknown parameters ~a =
{ai(⇢B , yp, T ), i = 1� 4} are taken as random variables,



Considering in-medium effects   

• a1, a2, a3, and a4 are parameters that need to be determined.

• How to do that? Bayesian analysis.

• They are going to be calculated such that the volumes of the clusters 
are the same, so that the thermodynamical conditions are fulfilled.
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FIG. 1. (Color online) System 124Xe+112Sn. (Top) Free vol-
ume estimated from the different clusters as a function of
vsurf from Eq. (3). Lines: ideal gas limit CAZ = 1. Note: the
lines of 3H and 3He overlap. Symbols: bayesian determination
of the in-medium correction. (Bottom) Chemical equilibrium
constant of 4He as a function of the density, estimated from
the data with the ideal gas prescription for the volume (lower
set of points), and with the corrected one (upper set). For
comparison, the predictions of Ref. [21] with a coupling such
as to fit the uncorrected results from Ref. [12] are shown as a
continuous band labelled xs = 0.85 ± 0.05, and the ideal gas
prediction is shown by a dashed line.

The posterior distribution is obtained by imposing the
volume observation with a likelihood probability as fol-
lows:

Ppost (⃗a) = N exp

(

−

∑

AZ(V
(AZ)
f (⃗a)− V̄f (⃗a))2

2V̄f (⃗a)2

)

.(5)

Here, N is a normalization, V (AZ)
f (⃗a) is the free volume

obtained from the (A,Z) cluster using Eq. (3) with the
specific choice a⃗ for the parameter set of the correction,
and V̄f (⃗a) is the volume corresponding to a given param-
eter set a⃗, averaged over the cluster species.
The posterior expectation values of the volume as esti-

mated from the multiplicities of each cluster from Eq. (3),
with the associated standard deviations, are shown as
symbols in Fig. 1. It is clear that when we include the
correction, the volumes decrease and the estimations ob-
tained from the different cluster species are compatible
within error bars. Concerning the functional dependence
of the correction, we can observe that we have as many
parameters as different independent volume estimations,
meaning that we are allowing independent corrections for
the different nuclear species. It would be interesting to
have chemical constant measurements for other nuclear
species, such as to check if a universal dependence of the
in-medium effects on A and I, as it is supposed in differ-
ent theoretical models [15–17], is supported by the data.
The bottom panel of Fig. 1 shows the corresponding

modification of the 4He chemical equilibrium constant in
the system 124Xe+112Sn. Similar results are obtained for
the other particles and the other systems (not shown). In
this Figure, the standard deviations associated to the ex-
perimental equilibrium constants are joined by full lines.
The estimation with CAZ = 1 as in [12], already shown
in Ref. [18], is given by the lower set of points 1, while the
higher data set gives the result employing the posterior
distribution of CAZ from Eq. (5). We can see that both
the average and the standard deviation of the estimation
are increased. Concerning the effect on the average, a re-
duction of the volume corresponds to an increase of the
baryonic density, up to a factor of two, and therefore an
increase of the chemical equilibrium constants with re-
spect to the estimation employing the ideal gas assump-
tion (see Eq. (1)). Concerning the variance, while in the
previous analysis no experimental error was associated to
the volume estimation, the bayesian determination of the
volume distribution allows a more realistic estimation of
the systematic uncertainties of both density and chemical
constants, with increased error bars. Realistic uncertain-
ties might be even slightly larger on the low density side,
because we cannot exclude that the in-medium effects
could lead to an increased proper size of the clusters VAZ .
The results of the different systems almost perfectly over-
lap, confirming the expectation that chemical constants
are isospin-independent (not shown). If we compare the
experimental chemical constants with the ideal gas ex-
pectation Eq. (2) (dashed line in Fig. 1), we can observe
an important suppression of 4He clusters at high density.
But this suppression is less pronounced than the one ob-
tained with the previous analysis, with important conse-
quences on the present estimation of in-medium effects
for theoretical applications in the astrophysical context,
as we now discuss.

1 It has to be noticed that the definition of chemical constants in
Ref. [18] differs by a factor A with respect to the one of Refs. [12,
14, 17]. To allow an easier comparison with previous works, we
have here adopted the definition of Ref. [12]. Due to the different
definitions, in Fig. 9 of Ref. [18], the NIMROD data should have
been multiplied by a factor A for a direct comparison.

• The posterior distribution is obtained by imposing the volume observation  
with a likelihood probability:   

•  To minimize assumptions, we take flat priors  

2

universal reduction of the scalar attractive field to the
nucleons bound in clustered states, can be tuned so as
to obtain a reasonably good description of the chemical
constants. The suppression effect is smaller than the one
obtained from the comparison to the equilibrium con-
stants of Ref. [12], where ideal gas expressions were used
to extract the thermodynamical parameters, but still cor-
responds to important in-medium modifications of the
binding energies.
Under well-defined thermodynamic conditions, as

given by the temperature T , total baryon density ρB
and proton fraction yp, equilibrium chemical constants
Kc(A,Z) of a cluster of mass (charge) number A (Z),
are defined in terms of he number of clusters per volume,
i.e. the particle densities ρAZ , or of mass fractions ωAZ

as :

Kc(A,Z) =
ρAZ

ρZ11ρ
A−Z
10

=
ωAZ

AωZ
11ω

A−Z
10

ρ−(A−1)
B . (1)

An experimental measurement of such constants requires
the detection of particles and clusters from a statistical
ensemble of sources, and an estimation of the associated
thermodynamic parameters (T, ρB, yp).
Under the assumption that chemical equilibrium holds

at the different time steps of the emission from the ex-
panding source produced in central 136,124Xe+124,112Sn
collisions, the Coulomb corrected particle velocity vsurf
in the source frame can be used to select statistical en-
sembles of particles corresponding to different emission
times, and therefore different thermodynamic conditions
[12]. A detailed comparison between the four reactions
was performed in Ref. [19], verifying the statistical char-
acter of the emission. A strong argument confirming the
crucial hypothesis of chemical equilibrium as a function of
time was given in Ref. [18], observing that the extracted
thermodynamic parameters as a function of vsurf are in-
dependent of the entrance channel of the reaction.
The detected multiplicities YAZ(vsurf ) allow a direct

experimental determination of the mass fractions ωAZ =
AYAZ/AT , as well as of the total source mass AT (t) as a
function of the emission time, but the measurement of the
baryonic density ρB(t) = AT /VT additionally requires an
estimation of the source volume, at the different times of
the expansion. This latter is given by the free volume
Vf with the addition of the proper volume VAZ of the
clusters which belong to the source at a given time, VT =
Vf +

∑

AZ VAZωAZAT /A, with VAZ = 4πR3
AZ/3, where

RAZ is the experimental radius of each cluster.
The free volume can be extracted from the differ-

ential cluster spectra ỸAZ(p⃗) = YAZ(vsurf )/(4πp2∆p),
which can be related to differential cluster densities as
fAZ(p⃗) = ỸAZ(p⃗)/Vf [12, 18]. Supposing an ideal gas
of classical clusters with binding energies BAZ in ther-
modynamic equilibrium at temperature T in the grand-
canonical ensemble, the differential mass densities read:

f id
AZ(p⃗) =

gAZ

h3
exp

[

1

T

(

BAZ −
p2

2MAZ
+ Zµp +Nµn

)]

,

(2)

with MAZ = Am−BAZ , gAZ = 2SAZ + 1 the mass and
spin degeneracy of cluster (A,Z), m the nucleon mass,
and the superscript stands for “ideal”. In-medium ef-
fects are expected to suppress the cluster densities [14],
with respect to Eq. (2), ρAZ = CAZρidAZ , where the in-
medium correction CAZ < 1 can depend on the ther-
modynamic conditions, the cluster species and their mo-
mentum [14]. If we normalize the cluster spectrum by
the proton and neutron spectra at the same velocity, the
unknown chemical potentials µn,p cancel, and the free
volume Vf can be independently estimated from the dif-
ferent cluster species as:

Vf = h3R
A−Z

A−1
np CAZ exp

[

BAZ

T (A− 1)

]

(

gAZ

2A
Ỹ A
11(p⃗)

ỸAZ(Ap⃗)

)
1

A−1

,

(3)
where the free neutron-proton ratio Rnp is estimated
from the multiplicities of the A = 3 isobars , Rnp =
(Y31/Y32) exp [(B32 −B31)/T ], and BAZ are the experi-
mentally known vacuum binding energy of the clusters.
The presence of in-medium corrections is clearly con-

firmed by the experimental data, as shown by Fig. 1,
which displays the value of the free volume obtained from
Eq. (3) for the 124Xe+112Sn system, using different par-
ticle species. A clear hierarchy is observed as a function
of the cluster mass if CAZ = 1 is assumed, corresponding
to the ideal gas limit. It is clear from Eq. (3) that to
have consistent estimations of the volume, the deuteron
requires a larger correction with respect to the heavier He
isotopes. The volume splitting increases with decreasing
vsurf , showing that the in-medium effects additionally
depend on the thermodynamic conditions. Fully com-
patible results are obtained from the other three data
sets (not shown).
The correction factors CAZ are, therefore, introduced

as a modification of the cluster binding energies due to
the presence of the medium. We introduce a very general
four-parameters expression as:

CAZ(ρB , yp, T ) = exp

[

−
a1Aa2 + a3|I|a4

THHe(A− 1)

]

, (4)

where the temperature is estimated through the iso-
baric double isotope ratio Albergo formula [20], and it
is indicated as THHe. The unknown parameters a⃗ =
{ai(ρB, yp, T ), i = 1 − 4} are taken as random variables,
with a probability distribution fixed by imposing that
the volumes obtained from the experimental spectra ỸAZ

of the different (A,Z) nuclear species in a given vsurf
bin, correspond to compatible values. To minimize the
a-priori assumptions, we take in each vsurf bin uninfor-
mative flat priors, Pprior(⃗a) = θ(⃗amin − a⃗max), within an
interval largely covering the physically possible reduc-
tion range of the binding energy, 0 ≤ a1 ≤ 15 MeV,
0 ≤ a3 ≤ a1, −1 ≤ a2 ≤ 1, 0 ≤ a4 ≤ 4.

that cover an enough large interval for the physically possible reduction of 
the binding energy.



Considering in-medium effects - 
how to implement   

• We can then calculate expectation values and the correspondent standard 
deviations:

Experimental determination of chemical constants 13

The prior (posterior) probability distribution of any physical quantity X is then

readily calculated as:

P (X = X0) =
∫

da⃗P (⃗a)δ (X (⃗a)−X0) , (25)

where P (⃗a) is the prior (posterior) distribution of the correction parameters. Similarly,

expectation values can be calculated as:

⟨X⟩ =
∫

da⃗P (⃗a)X (⃗a) , (26)

and the correspondent standard deviations as,

σX =
√

⟨X2⟩ − ⟨X⟩2 . (27)

The left part of Fig. 3 shows the prior and posterior distribution of the total volume

VT in two chosen velocity bins, vsurf = 4.1 cm/ns (6th bin) and vsurf = 5.9 cm/ns (15th

bin). In red, we also show the probabilities calculated without the correction factor,

using Eq.(12). In this case, the width of the distribution is only due to the experimental

errors. The general effect of allowing for an in-medium correction is a reduction of
the estimated volume. This can be immediately understood by comparing the ideal

gas estimation Eq.(10), and the modified expression Eq.(23), and considering that we

impose that the correction CAZ ≤ 1. Indeed, following the microscopic calculations of in-

medium effects [10], we consider that, because of the Pauli blocking effect, the influence

of the external nucleon gas goes in the direction of reducing the effective binding in the

medium.
We can see that in the lower velocity bin, corresponding to a later time and larger

volume, the prior volume distribution is completely unconstrained, reflecting the large

dispersion of the volume estimation which is obtained in the absence of the correction

(see Fig.2). On the other hand, the condition of compatibility between the volume

measurements allows a fair determination of this variable, crucial for the rest of the

analysis. In the higher velocity bin, corresponding to earlier times of the expansion and
more compact configurations, the volume scale is reduced, meaning that the volume

estimation is less sensitive to the importance of the correction. Still, the posterior

distribution is considerably narrower than the prior one. The corrected expectation

values of the volume as estimated from the multiplicities of each cluster from Eq.(23),

with the associated standard deviations, are shown as a function of vsurf in the right

part of Fig. 3. It is clear that when we include the correction, the average volumes are
systematically lower than the uncorrected results of Fig.2, and the estimations obtained

from the different cluster species are compatible within error bars.

4. Equilibrium constants

The difference between the volume estimation from the ideal gas assumption Eq.(10),

and the one determined by the more general expression Eq.(23) with the Bayesian
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• The points show the posterior expectation values for the volumes:

Experimental chemical equilibrium 
constants with INDRA data  

as THHe. The unknown parameters a⃗ ¼ faiðρB; yp; TÞ; i ¼
1–4g are taken as random variables, with a probability
distribution fixed by imposing that the volumes obtained
from the experimental spectra ỸAZ of the different ðA; ZÞ
nuclear species in a given vsurf bin correspond to compatible
values. To minimize the a priori assumptions, we take in
each vsurf bin uninformative flat priors, Ppriorða⃗Þ ¼ θða⃗min−
a⃗maxÞ, within an interval largely covering the physically
possible reduction range of the binding energy, 0 ≤ a1 ≤
15 MeV, 0 ≤ a3 ≤ a1, −1 ≤ a2 ≤ 1, 0 ≤ a4 ≤ 4.
The posterior distribution is obtained by imposing

the volume observation with a likelihood probability as
follows:

Ppostða⃗Þ ¼ N exp
!
−
P

AZ½V
ðAZÞ
f ða⃗Þ − V̄fða⃗Þ%2

2V̄fða⃗Þ2

"
: ð5Þ

Here, N is a normalization, VðAZÞ
f ða⃗Þ is the free volume

obtained from the ðA; ZÞ cluster using Eq. (3) with the
specific choice a⃗ for the parameter set of the correction, and
V̄fða⃗Þ is the volume corresponding to a given parameter set
a⃗, averaged over the cluster species.
The posterior expectation values of the volume as

estimated from the multiplicities of each cluster from
Eq. (3), with the associated standard deviations, are shown
as symbols in Fig. 1. It is clear that when we include the
correction, the volumes decrease and the estimations
obtained from the different cluster species are compatible
within error bars. Concerning the functional dependence of
the correction, we can observe that we have as many
parameters as different independent volume estimations,
meaning that we are allowing independent corrections for
the different nuclear species. It would be interesting to have
chemical constant measurements for other nuclear species,
such as to check if a universal dependence of the in-
medium effects on A and I, as it is supposed in different
theoretical models [15–17], is supported by the data.
The bottom panel of Fig. 1 shows the corresponding

modification of the 4He chemical equilibrium constant in
the system 124Xeþ 112Sn. Similar results are obtained for
the other particles and the other systems (not shown). In
this figure, the standard deviations associated to the
experimental equilibrium constants are joined by full lines.
The estimation with CAZ ¼ 1 as in Ref. [12], already shown
in Ref. [18], is given by the lower set of points [22], while
the higher dataset gives the result employing the posterior
distribution of CAZ from Eq. (5). We can see that both the
average and the standard deviation of the estimation are
increased. Concerning the effect on the average, a reduction
of the volume corresponds to an increase of the baryonic
density, up to a factor of 2, and therefore an increase of the
chemical equilibrium constants with respect to the estima-
tion employing the ideal gas assumption [see Eq. (1)].
Concerning the variance, while in the previous analysis no
experimental error was associated to the volume estimation,
the Bayesian determination of the volume distribution
allows a more realistic estimation of the systematic uncer-
tainties of both density and chemical constants, with
increased error bars. Realistic uncertainties might be even
slightly larger on the low-density side, because we cannot
exclude that the in-medium effects could lead to an
increased proper size of the clusters VAZ. The results of
the different systems almost perfectly overlap, confirming
the expectation that chemical constants are isospin inde-
pendent (not shown). If we compare the experimental
chemical constants with the ideal gas expectation Eq. (2)
(dashed line in Fig. 1), we can observe an important
suppression of 4He clusters at high density. But this
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FIG. 1. System 124Xeþ 112Sn. Top: Free volume estimated
from the different clusters as a function of vsurf from Eq. (3).
Lines show the ideal gas limit CAZ ¼ 1. Note that the lines of 3H
and 3He overlap. Symbols show the Bayesian determination of
the in-medium correction. Bottom: Chemical equilibrium con-
stant of 4He as a function of the density, estimated from the data
with the ideal gas prescription for the volume (lower set of points)
and with the corrected one (upper set). For comparison, the
predictions of Ref. [20] with a coupling such as to fit the
uncorrected results from Ref. [12] are shown as a continuous
band labeled xs ¼ 0.85' 0.05, and the ideal gas prediction is
shown by a dashed line.
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• When we apply the correction, the volumes converge.



Equilibrium constants and data 
from INDRA   

• This work shows that there is in-medium 
effects.


• They give rise to larger densities, 
compared to ideal gas limit.


• The 3 data systems are compatible.

suppression is less pronounced than the one obtained with
the previous analysis, with important consequences on the
present estimation of in-medium effects for theoretical
applications in the astrophysical context, as we now discuss.
In Ref. [17], a novel approach for the inclusion of in-

medium effects in the equation of state for warm stellar
matter with light clusters was introduced. This model
includes a phenomenological modification in the scalar
cluster-meson coupling, and includes an extra term in the
effective mass of the clusters, which acts as an exclusion-
volume effect. The scalar coupling acting on nucleons
bound in a cluster of mass A is defined as gsðAÞ ¼ xsAgs,
with gs the scalar coupling of homogeneous matter, and xs a
free parameter. A constraint on this parameter was obtained
in the low-density regime from the virial EOS, but a precise
determination of xs needs an adjustment at densities close
to the Mott density corresponding to the dissolution of
clusters in the medium. The parameter xs measures how
much the medium affects the binding of the cluster. The
smaller the xs, the stronger the in-medium effect, and the
smaller the dissolution density of the cluster.
The chemical equilibrium constants obtained with this

model were compared with the NIMROD results [12]
obtained assuming an ideal gas expression for the deter-
mination of the nuclear density [17,20], and a satisfactory
agreement was obtained for all clusters but the deuteron
using xs ¼ 0.85$ 0.05.
The prediction of this model is shown, for the thermo-

dynamic conditions explored by the Xeþ Sn systems, in
the bottom panel of Fig. 1. We can see that the calculation
can reproduce the INDRA data only if these latter are
analyzed using the same hypotheses as in Ref. [12] (lower
set of points). This suggests that the two sets are compat-
ible, which points toward the validity of the statistical
equilibrium hypothesis for both of them. However, it is also
clear that the estimation xs ¼ 0.85$ 0.05 overestimates
the in-medium effects, once the consistent inclusion of the
CAZ is accounted for.
To estimate the effect of the correction, and, at the same

time, determine the value of the in-medium parameter xs
in a consistent way, we have compared the model of
Refs. [17,20] with this new analysis.
In order to make this comparison, we fix the temperature

in each ðρB; ypÞ point by imposing that the isotopic
thermometer THHe evaluated in the theoretical model
correctly reproduces the measured THHe value. A small
difference between the input temperature of the theory and
the one estimated in the same calculation via the double
ratios is obtained, which does not exceed 10% at the highest
temperature. Indeed, the Albergo thermometer [21] used to
estimate the temperature is only valid under the assumption
that the in-medium corrections to Eq. (2) cancel in double
isobar ratios, which is, in principle, not the case, if the
correction does not scale linearly with the particle numbers.
The resulting chemical constants are compared to the

experimental ones in Fig. 2. As we can observe, the
deuteron chemical constant behavior is now reproduced,
and the chemical constants of 3He and 3H are almost
superposed. Very similar results are obtained for the other
two experimental entrance channels (not shown).
In Refs. [17,20], we used xs ¼ 0.85 in order to reproduce

the results of Qin et al. [12]. With this improved analysis, a
higher value xs > 0.85 is needed, corresponding to smaller
corrections and a larger dissolution density. An optimal
value can be extracted as xs ¼ 0.92$ 0.02. This value
seems to reproduce reasonably well the whole set of
experimental constants, and we have checked that it is
still within the virial EOS limits. This can be understood
from the fact that the virial limit only concerns very low
densities, where the predictions with the two different
values of xs are very close (see Fig. 1).
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FIG. 2. System 136Xeþ 124Sn. The equilibrium constants as a
function of the density. The full lines join the 1 − σ uncertainty
intervals. The gray bands are the equilibrium constants from a
calculation [20] where we consider homogeneous matter with
five light clusters, calculated at the average value of (T, ρexp,
ypgexp ), and considering cluster couplings in the range of
xsi ¼ 0.92$ 0.02. The color code represents the global proton
fraction.
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solid lines report the ideal gas limit, and were obtained from eq. (20) with eq. (12).
The grey band shows the area where data might be contaminated by emission from
the spectator source.

see that the existence of an in-medium correction goes in the direction of increasing the

density, and the effect is the same for the three systems.
Still, it is important to stress that the temperature is evaluated with the Albergo

THHe thermometer of Eq.(16). As we have discussed in Section 2, this expression

corresponds to the true thermodynamical temperature T only if the in-medium

corrections to the ideal gas of clusters expression Eq. (15) cancel in the double ratio.

This is in principle not the case if the correction does not scale linearly with the particle

numbers. Our Bayesian analysis does not allow us to determine the deviation of Eq.(16)
from the true thermodynamic temperature, and this can only be done in the framework

of a specific model. One such model will be considered in Section 5.

4.1. Different parameter sets for the in-medium effect correction

The correction given by Eq.(22) is a four-parameter set, function of the number of

nucleons A and isospin I. This functional form has a certain degree of arbitrariness,
and the expression is not unique. In principle, the correction can depend on all the

good quantum numbers of the clusters, namely A, I, and the charge Q. However, the

volumes extracted from 3H and 3He are fully compatible already in the uncorrected

• points: new analysis; lines: ideal gas.



Conclusions

•Our model reproduces both virial limit and Kc from HIC data.


• INDRA data was analysed based on a new method, with in-medium 
effects.


•Comparing to a RMF model, a larger scalar coupling than the one 
found in a previous study NOT including in-medium effects in the data 
analysis was found.


•This implies a smaller effect on the binding energies of the clusters 
(xs=1 means unbound nucleons) => larger melting densities => MORE 
clusters in CCSN matter!!  


• Light clusters and pasta structures are relevant and should be 
explicitly included in EoS for CCSN simulations and NS mergers.

Thank you!


