Symmetry breaking on the scale of the nuclear chart

W. Ryssens, G. Scamps, M. Bender, & S. Goriely

29th of September 2021

Where did the elements originate?

M. Arnould & S. Goriely, Prog. Part. Nuc. Phys. 112, 103766 (2020).

$$E \sim \int d^3 r \left[\mathbf{C}^{\rho} \rho(\vec{r}) \rho(\vec{r}) + \mathbf{C}^{\tau} \rho(\vec{r}) \tau(\vec{r}) + \dots \right]$$

- Pheno. form and fit of C's
- Simple mean-field ansatz

$$E \sim \int d^3 r \left[\mathbf{C}^{\rho} \rho(\vec{r}) \rho(\vec{r}) + \mathbf{C}^{\tau} \rho(\vec{r}) \tau(\vec{r}) + \dots \right]$$

- Pheno. form and fit of C's
- Simple mean-field ansatz

- + microscopic method
- + feasible for 1000s of nuclei

$$E \sim \int d^3 r \left[\mathbf{C}^{\rho} \rho(\vec{r}) \rho(\vec{r}) + \mathbf{C}^{\tau} \rho(\vec{r}) \tau(\vec{r}) + \dots \right]$$

- Pheno. form and fit of C's
- Simple mean-field ansatz

- + microscopic method
- + feasible for 1000s of nuclei

"Structure" fits

- Study observables locally
- Fitted on $\lesssim 10$ nuclei
- Typically \sim 15 parameters
- Advanced calculations

$$E \sim \int d^3 r \left[\mathbf{C}^{\boldsymbol{\rho}} \rho(\vec{r}) \rho(\vec{r}) + \mathbf{C}^{\boldsymbol{\tau}} \rho(\vec{r}) \tau(\vec{r}) + \dots \right]$$

- Pheno. form and fit of C's
- Simple mean-field ansatz

- + microscopic method
- + feasible for 1000s of nuclei

"Structure" fits	"Astro" fits
 Study observables locally 	 Study global masses
• Fitted on \lesssim 10 nuclei	
• Typically ~ 15 parameters	 More parameters (22)
 Advanced calculations 	 Simplified calculations

$$E \sim \int d^3 r \left[\mathbf{C}^{\rho} \rho(\vec{r}) \rho(\vec{r}) + \mathbf{C}^{\tau} \rho(\vec{r}) \tau(\vec{r}) + \dots \right]$$

- Pheno. form and fit of C's
- Simple mean-field ansatz

- + microscopic method
- + feasible for 1000s of nuclei

"Structure" fits	"Astro" fits
 Study observables locally 	 Study global masses
• Fitted on \lesssim 10 nuclei	! Fitted on 2408 masses
• Typically ~ 15 parameters	 More parameters (22)
 Advanced calculations 	 Simplified calculations

$$E \sim \int d^3 r \left[\mathbf{C}^{\rho} \rho(\vec{r}) \rho(\vec{r}) + \mathbf{C}^{\tau} \rho(\vec{r}) \tau(\vec{r}) + \dots \right]$$

- Pheno. form and fit of C's
- Simple mean-field ansatz

- + microscopic method
- + feasible for 1000s of nuclei

"Structure" fits	"Astro" fits		
 Study observables locally 	 Study global masses 		
• Fitted on $\lesssim 10$ nuclei	! Fitted on 2408 masses		
• Typically ~ 15 parameters	 More parameters (22) 		
 Advanced calculations 	 Simplified calculations 		
$ ightarrow \sigma_{ m rms}({\it M}) \sim$ 2-10 MeV			

$$E \sim \int d^3 r \left[\mathbf{C}^{\rho} \rho(\vec{r}) \rho(\vec{r}) + \mathbf{C}^{\tau} \rho(\vec{r}) \tau(\vec{r}) + \dots \right]$$

- Pheno. form and fit of C's
- Simple mean-field ansatz

- + microscopic method
- + feasible for 1000s of nuclei

"Structure" fits	"Astro" fits
 Study observables locally 	 Study global masses
- Fitted on $\lesssim 10$ nuclei	! Fitted on 2408 masses
• Typically ~ 15 parameters	 More parameters (22)
 Advanced calculations 	 Simplified calculations
$ ightarrow\sigma_{ m rms}({\it M})\sim$ 2-10 MeV	$ ightarrow \sigma_{ m rms}({\it M}) \sim$ 0.6 MeV

$$E \sim \int d^3 r \left[\mathbf{C}^{\boldsymbol{\rho}} \rho(\vec{r}) \rho(\vec{r}) + \mathbf{C}^{\boldsymbol{\tau}} \rho(\vec{r}) \tau(\vec{r}) + \dots \right]$$

- Pheno. form and fit of C's
- Simple mean-field ansatz

- + microscopic method
- + feasible for 1000s of nuclei

"Structure" fits	"Astro" fits
 Study observables locally 	 Study global masses
• Fitted on $\lesssim 10$ nuclei	! Fitted on 2408 masses
• Typically ~ 15 parameters	 More parameters (22)
 Advanced calculations 	 Simplified calculations
$ ightarrow \sigma_{ m rms}({\it M}) \sim$ 2-10 MeV	$ ightarrow \sigma_{ m rms}({\it M}) \sim$ 0.6 MeV

We are bringing the "structure" to the "astro" scale!

Spherical

Prolate

One DOF: β_{20}

State-of-the-art "Astro" fits

Axial symmetry

State-of-the-art "Astro" fits

Axial symmetry

"Structure" calculations

Triaxial deformation

State-of-the-art "Astro" fits

Axial symmetry

"Structure" calculations

Triaxial deformation

Two DOF: (β_{20}, β_{22}) or (β, γ)

State-of-the-art "Astro" fits

- Axial symmetry
- Time-reversal symmetry
- Reflection symmetry

"Structure" calculations

- Triaxial deformation
- Time-reversal breaking
- Octupole deformation

Ingredients

- Standard Skyrme functional
- ightarrow rotational correction
 - 22 parameters

Ingredients

- Standard Skyrme functional
- ightarrow rotational correction
 - 22 parameters

- MOCCa
- + 3D coordinate grid
- + Fast and numerically accurate

Ingredients

- Standard Skyrme functional
- ightarrow rotational correction
 - 22 parameters

- MOCCa
- + 3D coordinate grid
- + Fast and numerically accurate

Ingredients

- Standard Skyrme functional
- ightarrow rotational correction
 - 22 parameters
 - Fitted to 2408 masses
 - and 884 charge radii

- MOCCa
- + 3D coordinate grid
- + Fast and numerically accurate

Ingredients

- Standard Skyrme functional
- ightarrow rotational correction
 - 22 parameters
 - Fitted to 2408 masses
 - and 884 charge radii

- MOCCa
- + 3D coordinate grid
- + Fast and numerically accurate
- Machine learning

	BSkG1	HFB-21	FRDM (2012)
$\sigma(M)$ (MeV)	0.741	0.577	0.560
$\sigma(R_c)$ (fm)	0.024	0.027	0.038

HFB-21: S. Goriely *et al.*, PRC **82**, 035804 (2010). FRDM: P. Möller *et al.*, At. Data Nucl. Data Tables, **109-110** (2016).

Triaxiality: where?

	BSkG1	HFB-21	FRDM (2012)
$\sigma(M)$ (MeV)	0.741	0.577	0.560
$\sigma(R_c)$ (fm)	0.024	0.027	0.038

HFB-21: S. Goriely *et al.*, PRC **82**, 035804 (2010). FRDM: P. Möller *et al.*, At. Data Nucl. Data Tables, **109-110** (2016).

W. Ryssens (ULB)

Triaxiality: comparison to experiment

Exp. data from COULEX extracted by M. Zielińska

M. Rocchini et al., PRC 103, 014311 (2021). M. Sugawara et al., EPJA, 16, 409 (2003). A. D. Avangeakaa et al., PLB 754, 254 (2016). Y. Toh et al. , EPJA 9, 353 (2000). A. D. Ayangeaka et al., PRL 123, 102501 (2019). E. Clément et al., PRC 75, 054313 (2007). A. E. Kavka et al., NPA 593, 177 (1995). E. Clément et al., PRC 94, 054326 (2016). M. Zielińska, Ph.D. thesis, Warsaw U., 2005. M. Zielińska et al., NPA 712, 3 (2002). K. Wrzosek-Lipska et al., PRC 86, 064305 (2012). J. Srebrny et al., NPA 766, 25 (2006). K. Wrzosek-Lipska et al., APB 51, 789 (2020). C. Fahlander et al., NPA 485, 327 (1988). L. E. Svensson et al., NPA 584, 547 (1995). L. Morrison et al., PRC 102, 054304 (2020). C. Y. Wu et al., NPA 607, 178 (1996).

Triaxiality: fission

- Fit with complete *Ť*-breaking
- 22 + **3** parameters
- Vibrational correction

- Fit with complete *Ť*-breaking
- 22 + **3** parameters
- Vibrational correction
- fit to RIPL-3 data
 - for 12 even-even nuclei
- Full eval.: 40 barriers $Z \ge 90$

- Fit with complete *Ť*-breaking
- 22 + **3** parameters
- Vibrational correction
- fit to RIPL-3 data
 - for 12 even-even nuclei
- Full eval.: 40 barriers $Z \ge 90$

BSkG2

- Fit with complete *Ť*-breaking
- 22 + **3** parameters
- Vibrational correction
- fit to RIPL-3 data
 - for 12 even-even nuclei
- Full eval.: 40 barriers $Z \ge 90$

	BSkG1	BSkG2	HFB-14	FR(L)DM
$\sigma(M)$ (MeV)	0.741	0.668	0.729	0.560
$\sigma(E_l)$ (MeV)	0.853	0.447	0.621	0.767

HFB-14 from S. Goriely *et al.*, PRC **75**, 064312 (2007). FRDM from P. Möller *et al.*, At. Data Nucl. Data Tables, **109-110** (2016).

- Large-scale mass model
- fitted to 2408 masses
- on a 3D mesh, ML fit
- ground state triaxiality

BSkG1

- Large-scale mass model
- fitted to 2408 masses
- on a 3D mesh, ML fit
- ground state triaxiality

G. Scamps *et al.,* arXiv:2011.07904 (nucl-th)

BSkG1

- Large-scale mass model
- fitted to 2408 masses
- on a 3D mesh, ML fit
- ground state triaxiality

G. Scamps *et al.,* arXiv:2011.07904 (nucl-th)

- The next generation
- Full Ť-breaking
- Added vibrational corr.
- Improved fission barriers

BSkG1

- Large-scale mass model
- fitted to 2408 masses
- on a 3D mesh, ML fit
- ground state triaxiality

BSkG2

- The next generation
- Full *Ť*-breaking
- Added vibrational corr.
- Improved fission barriers

G. Scamps *et al.,* arXiv:2011.07904 (nucl-th)

W.R. *et al.,* in preparation.

BSkG1

- Large-scale mass model
- fitted to 2408 masses
- on a 3D mesh, ML fit
- ground state triaxiality

BSkG2

- The next generation
- Full Ť-breaking
- Added vibrational corr.
- Improved fission barriers

G. Scamps *et al.,* arXiv:2011.07904 (nucl-th) W.R. *et al.,* in preparation.

Outlook

- (Local) comparisons with experiment underway
- Complete fission model (2000 nuclei, half-lives, ...)
- Fission barriers for odd nuclei

• • • •

BSkG1

- Large-scale mass model
- fitted to 2408 masses
- on a 3D mesh, ML fit
- ground state triaxiality

BSkG2

- The next generation
- Full Ť-breaking
- Added vibrational corr.
- Improved fission barriers

G. Scamps *et al.,* arXiv:2011.07904 (nucl-th) W.R. *et al.,* in preparation.

Outlook

. . .

- (Local) comparisons with experiment underway
- Complete fission model (2000 nuclei, half-lives, ...)
- Fission barriers for odd nuclei

Thanks for...

...the **help**:

BSkG1/2

- S. Goriely
- <u>G. Scamps</u>
- E. Olsen
- J.-F. Lemaître

ULB ULB

ULB CFA

MOCCa

- P.-H. Heenen ULB
- M. Bender
- B. Bally

- IP2I
- UAM

Thanks for...

...the **help**:

BSkG1/2

- S. Goriely ULB
- G. Scamps
- E. Olsen ULB
- J.-F. Lemaître CEA

... the CPU time:

- CÉCI network, Belgium
- The Zenobe cluster

MOCCa

- P.-H. Heenen ULB
- M. Bender
- B. Bally

ULB

- IP2I
- UAM

Thanks for...

...the **help**:

BSkG1/2

- S. Goriely ULB
- G. Scamps
- E. Olsen ULB
- J.-F. Lemaître CEA

ULB

- ... the CPU time:
 - CÉCI network, Belgium
 - The Zenobe cluster

MOCCa

P.-H. Heenen ULBM. Bender IP2IB. Bally UAM

... the support:

Thanks for...

...the **help**:

BSkG1/2

- S. Goriely ULB
- G. Scamps
- E. Olsen ULB
- J.-F. Lemaître CEA

... the CPU time:

- CÉCI network, Belgium
- The Zenobe cluster

MOCCa

P.-H. Heenen ULB
M. Bender IP2I
B. Bally UAM

... the support:

... your attention!

ULB