

Theory of nuclear fission: present and perspectives

D. Regnier^{1,2}

¹CEA, DAM, DIF, 91297 Arpajon, France ²Univ. Paris-Saclay, CEA, Laboratoire Matière en Conditions Extrêmes, Bruyères-le-Châtel, France

Nuclear fission and its observables

Difficult to tackle with a reaction theory

- Huge number of output channels
- \bullet Interest for observables at $t<\infty$

Nuclear fission and its observables

Different models for different needs

Different models for different needs

Table of contents

Theoretical approaches modeling the generation of fission fragments

Scission point models

Open system treatment:

 $\psi(\mathbf{r}_1\sigma_1,\cdots,\mathbf{r}_A\sigma_A)=\psi_{\mathsf{shape}}\times\psi_{\mathsf{intrinsic}}$

Statistical distribution of states close to scission shapes

Scission point models

Open system treatment:

 $\psi(\mathbf{r}_1\sigma_1,\cdots,\mathbf{r}_A\sigma_A)=\psi_{\text{shape}}\times \text{thermal bath of intrinsic degrees of freedom}$

Statistical distribution of states close to scission shapes

Langevin dynamics

- Open system treatment:
 - $\psi=\psi_{\mathrm{shape}} imes$ thermal bath of intrinsic degrees of freedom
- Oynamics of the shape coordinates

Particle evaporation (neutrons, gamma rays)
 No information on internal fragments characteristics (e.g. spins)

Fission at the time dependent mean-field level

Recent successes:

2014: ²⁵⁸ Fm ²⁶⁴ Fm (no pairing)
C. Simenel *et al.*, PRC 89, 031601(R) (2014)
2015: ²⁵⁸ Fm with pairing (TDBCS)
G. Scamps *et al.*, PRC 92, 011602(R) (2015)
2016: ²⁴⁰ Pu with pairing (full TDHFB)
A. Bulgac *et al.*, PRL 116, 122504 (2016)
2020: Deformation of the fragments
G. Scamps *et al.*, Nature 564 (2018)
2021: Spin of the fragments
A. Bulgac *et al.*, PRL 126, (2021)

✓ Dynamics through scission (diabatic aspect)
 × Fragments mass yields (lack of 1-body fluctuations)

Including fluctuations with a statistical ensemble of trajectories

- Statistical distribution of initial states (i.e. Wigner transform)
- Classical averaging of observables

Example: Stochastic Mean Field dynamics of fission

D. Lacroix et al., EPJA 50 (2014)

Fragment kinetic energy distribution (large fluctuations)
 No tunnelling through fission barrier (lack of quantum interferences)

Quantum interferences: Time Dependent Generator Coordinate Method

Table of contents

Theoretical approaches modeling the generation of fission fragments

Dighlight on the primary fragments spins

Some perspectives for theo

Primary fragments intrinsic spins

Fragments spins impact strongly

- the predictions of gamma observables,
- the population of isomeric states in the fission products.

Questions

- What is the distribution of primary fragments spins ?
- How does it vary with the mass/charge of the fragments ?
- What mechanisms produce this spin ?

Primary fragments intrinsic spins

Fragments spins impact strongly

- the predictions of gamma observables,
- the population of isomeric states in the fission products.

Questions

- What is the distribution of primary fragments spins ?
- How does it vary with the mass/charge of the fragments ?
- What mechanisms produce this spin ?

A recent measurement at ALTO

Post-neutron fragments average spins from Yrast transitions measurements

After emission of n and statistical γ :

- Sawtooth shape of the post-neutron spins
- No event by event correlation between the spins

Before emission of n and statistical γ :

- No event by event correlation between the spins
- Generation of angular momentum after scission

J. Wilson et al., Nature 590 (2021)

Theory insight: from statistical deexcitation simulations

- I. Stetcu et al., arXiv:2108.04347 (2021) (CGMF):
 - No sawtooth on primary fragments spins... and yet a sawtooth after statistical n/γ emission
- J. Randrup et al., PRL 127 (2021) (FREYA):
 - \bullet Deformation of the fragments at scission \implies sawtooth in the spins
 - Mostely uncorrelated primary fragments spins.
- M. Travar et al., PLB 817 (2021) (VESPA & FIFRELIN):
 - Experimental sawtooth shape for M_{γ}
 - Best reproduced with a sawtooth for primary fragments spins

Theory insight: from statistical deexcitation simulations

- I. Stetcu et al., arXiv:2108.04347 (2021) (CGMF):
 - No sawtooth on primary fragments spins... and yet a sawtooth after statistical n/γ emission
- J. Randrup et al., PRL 127 (2021) (FREYA):
 - Deformation of the fragments at scission \implies sawtooth in the spins
 - Mostely uncorrelated primary fragments spins.
- M. Travar et al., PLB 817 (2021) (VESPA & FIFRELIN):
 - Experimental sawtooth shape for M_{γ}
 - Best reproduced with a sawtooth for primary fragments spins

New microscopic theory insight: from TDHFB

Most probable fragmentation only, full separation of the fragments ($\simeq 25$ fm)

A. Bulgac et al., PRL 126 (2021)

- Close to a statistical distribution $\propto (2J+1)exp\left(-J(J+1)/2\sigma^2
 ight)$
- \bullet Most probable fragmentations: $\bar{J}_{light} \simeq 9.9 \hbar > \bar{J}_{heavy} \simeq 6.3 \hbar$

New microscopic theory insight: from constrained HFB

Spin distributions for $\simeq 1500$ static configurations close to scission

P. Marevic et al., PRC 104 (2021)

- Large structure effects
- Most probable fragmentations: $\bar{J}_{\text{light}} \simeq 11.5\hbar > \bar{J}_{\text{heavy}} \simeq 6\hbar$

To put it in a nutshell...

- First predictions on primary fragments spins from microscopic theories
- **2** $\overline{J}_{\text{light}} > \overline{J}_{\text{heavy}}$ for the most probable fragmentation
- Spins seems correlated to the deformation close to scission
- A clean comparison microscopy+deexcitation theory versus observation is still missing

J. Wilson et al., Nature 590 (2021)

Table of contents

Some perspectives for theory

Modernizing, standardizing and sharing our simulation tools

Released (open source): EDF based approaches:

- HFODD: static HFB N. Schunck *et al.*, CPC 216 (2017)
- Sky3D: TDHF, TDBCS B. Schuetrumpf *et al.*, CPC 229 (2018)
- LISE: TDSLDA (TDHFB) S. Jin *et al.*, arXiv:2009.00745 (2020)
- FELIX: TDGCM
 - D. Regnier et al., CPC 225 (2018)

Fission fragment deexcitation:

- GEF: Weisskopf-Ewing K.-H Schmidt *et al.*, NDS 131 (2016)
- FREYA: Weisskopf-Ewing
 - J. Verbeke et al., CPC 222 (2018)
- CGMF: Hauser-Feshbach
 - P. Talou et al., arXiv:2011.10444 (2021)

Forthcoming:

HFB3 (N. Dubray et al.)

A new HFB solver with Gogny EDF

? (D. Regnier et al.)

An exploratory TDHF solver based on finite elements

Goals for microscopic dynamical approaches

Challenges

- Account at the same time for diabatic motion, large fluctuations and quantum coherence.
- Predict correlated yields Y(A, Z, KE...),
- including new observables E^* , spins, etc,
- and for all fissionning systems !

Non exhaustive list of ongoing projects on microscopic dynamics

- TDGCM in 3-dimensions N. Dubray *et al.*, D. Vretenar *et al.*
- QP extension of the TDGCM N. Pillet *et al.*
- Al to build collective space R.-L. Lasseri *et al.*, M. Verriere *et al.*
- Phase space fermion dynamics D. Lacroix *et al.*
- Time dependent density matrix P. Stevenson *et al.*
- Multiconfiguration TDHF D. Regnier *et al.*

Encoded Data

Reconstructed Data

Ultimately...bridging the three steps of the fission process

Observables of interest

- Prompt emission of exotic fissioning systems
- Scission neutrons ?
- Impact of the input channel (spin, energy) on the fission yields

Some more reviews forseeing the 'future'...

- Future of nuclear fission theory, M. Bender et al., J. Phys. G: Nucl. Part. Phys. 47 (2020)
- Nuclear Fission Dynamics: Past, Present, Needs, and Future, A. Bulgac et al., Front. in Phys. 8 (2020)