Location of the $\nu1d_{3/2}$ strength in ^{17}C

J. Lois-Fuentes, X. Pereira-López, B. Fernández-Domínguez, F. Delaunay and the e628 collaboration

USC/IGFAE & LPC-Caen
The N=16 shell gap

n-rich Oxygen : N=14, 16 gaps

- High E_x of 2^+ state in ^{22}O and ^{24}O
 M. Stanoiu et al., PRC 69, 034312 (2004)
 C.R. Hoffman et al., PRL 109, 022501 (2012)

- Small β_2 parameter in ^{22}O and ^{24}O
 E. Becheva et al., PRL 96, 012501 (2006)
 K. Tshoo et al., PRL 109, 022501 (2012)

SM interactions reproduce well data : WBT, SFO

WBT (USD) M. Stanoiu et al., PRC 78, 034315 (2008)
The N=16 shell gap

n-rich Oxygen : N=14, 16 gaps
- High E_x of 2^+ state in 22O and 24O
 M. Stanoiu et al., PRC 69, 034312 (2004)
 C.R. Hoffman et al., PRL 109, 022501 (2012)
- Small β_2 parameter in 22O and 24O
 E. Becheva et al., PRL 96, 012501 (2006)
 K. Tshoo et al., PRL 109, 022501 (2012)
SM interactions reproduce well data : WBT, SFO

n-rich Carbon : N=14, 16(?) gaps
- Low E_x of 2^+ state in 20C
 M. Stanoiu et al., PRC 69, 034312 (2004)
- Small B(E2) in 20C (p contrib.)
 M. Petri et al., PRL 96, 012501 (2011)
Modification of SM interaction : WBT*, SFO-tls
The N=16 shell gap

n-rich Oxygen : N=14, 16 gaps
- High E_x of 2^+ state in ^{22}O and ^{24}O
 C.R. Hoffman et al., PRL 109, 022501 (2012)
- Small β_2 parameter in ^{22}O and ^{24}O
 E. Becheva et al., PRL 96, 012501 (2006)
 K. Tshoo et al., PRL 109, 022501 (2012)
SM interactions reproduce well data : WBT, SFO

n-rich Carbon : N=14, 16(?) gaps
- Low E_x of 2^+ state in ^{20}C
- Small B(E2) in ^{20}C (p contrib.)
 M. Petri et al., PRL 96, 012501 (2011)
Modification of SM interaction : WBT*, SFO-tls

Locate the sp strength of the ν1d_{3/2} involved in the N=16 shell gap in ^{17}C
Previous spectroscopic experiments of ^{17}C

No evidence of $^{3/2}_+^+$ single particle states!
Single-neutron transfer

Spectroscopic tool: Transfer reactions in inverse kinematics: $^{16}\text{C}(d,p)^{17}\text{C}^*$

Measurements \Rightarrow Observables

$E_p, \theta \quad \rightarrow \quad E_x$

Natural width (Γ) $\rightarrow \quad C^2S$, some l information

Selectively populates single-particle states in ^{17}C
Experimental set-up

- CHARISSA
 - CsI (1 cm)
 - Si (65 μm)
 - Si (500 μm)

- MUST2
 - Si + CsI (300 μm + 3 cm)

- EXOGAM
 - Ge clovers

- Proton

- CD₂ target
 - 1.4 mg/cm²

- TIARA Barrel
 - Si resistive strips (400 μm)

- TIARA Hyball
 - Annular Si strip detector (400 μm)

- ¹⁶C beam
 - LISE spectrometer
 - 17.2 AMeV
 - ≈5×10⁴ pps

- CATS (MWPCs)
17C (dp-channel: bound states)

$\chi_v^2 = 1.89$

$S_n = 0.735 \text{ MeV}$

$E_{x,\text{max}} = 6.7 \text{ MeV}$
17C (dp-channel : bound states)

$\chi^2_v = 1.89$

$S_n = 0.735$ MeV

$E_{x,\text{max}} = 6.7$ MeV

E_x limited by $E > 0.5$ MeV

Tiara Hyball threshold!
17C (dp-channel : bound states)

$\chi^2_v = 1.89$

$S_n = 0.735$ MeV

$E_{x,\text{max}} = 6.7$ MeV
17C (dp-channel : bound states)

$\chi^2_v = 1.89$

$S_n = 0.735$ MeV

$E_{x,max} = 6.7$ MeV

E_x (keV)

<table>
<thead>
<tr>
<th>E_x (keV)</th>
<th>J^π</th>
<th>$C^2 S$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3/2+</td>
<td>0.03 (5/3)</td>
</tr>
<tr>
<td>217</td>
<td>1/2+</td>
<td>0.80 (22)</td>
</tr>
<tr>
<td>335</td>
<td>5/2+</td>
<td>0.62 (13)</td>
</tr>
</tbody>
</table>

Weak sp strength for the 1d3/2!
17C (dp-channel : unbound states)

Preliminary

\[\chi^2 = 1.89 \]

\[S_n = 0.735 \text{ MeV} \]

\[E_{x,\text{max}} = 6.7 \text{ MeV} \]

\[F(E) = A_G \cdot e^{\frac{1}{2} \left(\frac{E - E_0}{\sigma} \right)^2} + A_{R1} \cdot V(E, E_{R1}, \sigma_{R1}, \Gamma_{R1}) + \]

\[A_{R2} \cdot V(E, E_{R2}, \sigma_{R2}, \Gamma_{R2}) + A_{PS} \cdot S(E) \]

Bound States

1st resonance

2nd resonance

Phase Space

Experimental Data

Bound states

1st resonance

2nd resonance

Total fit

Phase Space
$^{17}\text{C} \text{ (dp-channel : unbound states)}$

$$F(E) = A_G \cdot e^{\frac{1}{2} \left(\frac{E-E_0}{\sigma} \right)^2} + A_{R1} \cdot V(E, E_{R1}, \sigma_{R1}, \Gamma_{R1}) + A_{R2} \cdot V(E, E_{R2}, \sigma_{R2}, \Gamma_{R2}) + A_{PS} \cdot S(E)$$

Experimental Data
- Bound states
- 1^{st} resonance
- 2^{nd} resonance
- Total fit
- Phase Space

$\chi^2 = 1.89$

$S_n = 0.735 \text{ MeV}$

$E_{x,\text{max}} = 6.7 \text{ MeV}$

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_x \text{ (MeV)}$</td>
<td>4.05(20)</td>
<td>6.10(17)</td>
</tr>
<tr>
<td>$\Gamma \text{ (MeV)}$</td>
<td>1.32(33)</td>
<td>1.52(44)</td>
</tr>
<tr>
<td>$\Gamma_{sp}^{1d_3/2} \text{ (MeV)}$</td>
<td>2.07(41)</td>
<td>6.9(14)</td>
</tr>
<tr>
<td>$C^2S(0^+)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[F(E) = A_G \cdot e^{\frac{1}{2} \left(\frac{E - E_0}{\sigma} \right)^2} + A_{R1} \cdot V(E, E_{R1}, \sigma_{R1}, \Gamma_{R1}) + A_{R2} \cdot V(E, E_{R2}, \sigma_{R2}, \Gamma_{R2}) + A_{PS} \cdot S(E) \]

\[C^2 S = \frac{\Gamma_{exp}}{\Gamma_{sp}} \]

\[\chi^2_v = 1.89 \]

\[S_n = 0.735 \text{ MeV} \]

\[E_{x,\text{max}} = 6.7 \text{ MeV} \]

\[E_x (\text{MeV}) \]

\[\Gamma (\text{MeV}) \]

\[\Gamma_{sp}^{1d_3/2} (\text{MeV}) \]

\[C^2 S(0^+) \]

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_x) (MeV)</td>
<td>4.05(20)</td>
<td>6.10(17)</td>
</tr>
<tr>
<td>(\Gamma) (MeV)</td>
<td>1.32(33)</td>
<td>1.52(44)</td>
</tr>
<tr>
<td>(\Gamma_{sp}^{1d_3/2}) (MeV)</td>
<td>2.07(41)</td>
<td>6.9(14)</td>
</tr>
<tr>
<td>(C^2 S(0^+))</td>
<td>0.64(20)</td>
<td>0.22(8)</td>
</tr>
</tbody>
</table>
17C (dp-channel : unbound states)

![Graph showing experimental data and fitted curves]

- $\chi^2 = 1.89$
- $S_n = 0.735 \text{ MeV}$
- $E_{x,\text{max}} = 6.7 \text{ MeV}$

Fitting Formula

$$F(E) = A_G \cdot e^{\frac{1}{2} \left(\frac{E-E_0}{\sigma} \right)^2} + A_{R1} \cdot V(E, E_{R1}, \sigma_{R1}, \Gamma_{R1}) +$$

$$A_{R2} \cdot V(E, E_{R2}, \sigma_{R2}, \Gamma_{R2}) + A_{PS} \cdot S(E)$$

Experimental Data:

- **Bound States**
- **1st resonance**
- **2nd resonance**
- **Total fit**
- **Phase Space**

Table:

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_x (MeV)</td>
<td>4.05(20)</td>
<td>6.10(17)</td>
</tr>
<tr>
<td>Γ (MeV)</td>
<td>1.32(33)</td>
<td>1.52(44)</td>
</tr>
<tr>
<td>$\Gamma_{sp}^{1d_{3/2}}$ (MeV)</td>
<td>2.07(41)</td>
<td>6.9(14)</td>
</tr>
<tr>
<td>$C^2S(0^+)$</td>
<td>0.64(20)</td>
<td>0.22(8)</td>
</tr>
</tbody>
</table>

Assignments:

- $l=1$: $\Gamma_{sp} \gg \Gamma_{exp}$
- $l=3$: $\Gamma_{sp} \to 0$
- $l=2$: $\frac{d\sigma}{d\Omega} \to \text{coherent } C^2S$

Assigned to be $l=2$
The energy and strength of the unbound states found is similar to the 2nd and 3rd resonances predicted by the SM. No evidence of the 1st resonance.
The energy and strength of the unbound states found is similar to the 2nd and 3d resonances predicted by the SM. No evidence of the 1st resonance. In the unbound $3/2^+$ states in ^{15}C most of the strength is also carried by the resonance that lays at lower energy.
Effective single-particle energy of the $\nu 1d_{3/2}$

16C

$$\Delta_{N=16} = \epsilon_{\nu 1d_{3/2}} - \epsilon_{\nu 2s_{1/2}}$$

$2s_{1/2} = 2.16(45)$

$1d_{3/2} = 3.45(86)$

$$\epsilon = \frac{\sum_{f=0}^{n-}(E_0 - E_f^-)C^2S_f^- + (2J_f + 1)\sum_{f=0}^{n+}(E_f^+ - E_0)C^2S_f^+}{\sum_{f=0}^{n-}C^2S_f^- + (2J_f + 1)\sum_{f=0}^{n+}C^2S_f^+}$$

$$\epsilon_{\nu 1d_{3/2}} = 3.84 (30) \text{ MeV}$$

b -> V. Maddalena et al. PRC 72, 011302(R) (2014)
c-> M. Baranger et al. NPA 149, 225 (1970)
The N=16 Shell gap survives in n-rich Carbon isotopes
The $N=16$ Shell gap survives in n-rich Carbon isotopes.

The $\nu 1d_{3/2}$ is less bounded than the predictions.

\[
\Delta_{N=16}(^{16}\text{C}) = \epsilon_{1d_{3/2}} - \epsilon_{2s_{1/2}} = 5.41(34) \text{ MeV bigger than } \sim \Delta_{N=16}(^{18}\text{O}) = 4.24 \text{ MeV}
\]
Conclusions

• 1. Two resonances have been found at $E_x = 4.05(20)$ and $6.10(17)$ MeV and associated widths were deduced to be $\Gamma = 1.32(33)$ and $1.52(44)$ MeV respectively.
Conclusions

• 1. Two resonances have been found at $E_x = 4.05(20)$ and $6.10(17)$ MeV and associated widths were deduced to be $\Gamma = 1.32(33)$ and $1.52(44)$ MeV respectively.

• 2. A d-wave neutron function providing support for a J^π of $^{3/2}^+$ was assigned for both states.
Conclusions

• 1. Two resonances have been found at $E_x = 4.05(20)$ and $6.10(17)$ MeV and associated widths were deduced to be $\Gamma = 1.32(33)$ and $1.52(44)$ MeV respectively.

• 2. A d-wave neutron function providing support for a J^π of $^{3/2}_2^+$ was assigned for both states.

• 3. Spectroscopic factors were deduced: $C^2S(0^+) = 0.64(20)$ and $0.22(8)$ respectively.
Conclusions

1. Two resonances have been found at $E_x = 4.05(20)$ and $6.10(17)$ MeV and associated widths were deduced to be $\Gamma = 1.32(33)$ and $1.52(44)$ MeV respectively.

2. A d-wave neutron function providing support for a J^π of $3/2^+$ was assigned for both states.

3. Spectroscopic factors were deduced: $C^2S(0^+) = 0.64(20)$ and $0.22(8)$ respectively.

4. The combination of the E and C^2S of the resonances allowed us to determine the ESPE, having a value of $\varepsilon_{1d_{3/2}} = 3.84(30)$ MeV.
• 1. Two resonances have been found at $E_x = 4.05(20)$ and $6.10(17)$ MeV and associated widths were deduced to be $\Gamma = 1.32(33)$ and $1.52(44)$ MeV respectively.

• 2. A d-wave neutron function providing support for a J^π of $\frac{3}{2}^+$ was assigned for both states.

• 3. Spectroscopic factors were deduced: $C^2 S(0^+) = 0.64(20)$ and $0.22(8)$ respectively.

• 4. The combination of the E and $C^2 S$ of the resonances allowed us to determine the ESPE, having a value of $\varepsilon_{1d_{3/2}} = 3.84(30)$ MeV.

• 5. The combination with previous information of the v2s1/2, gives us information on the N=16 shell gap.

\[\Delta_{N=16} = \epsilon_{v1d_{3/2}} - \epsilon_{v2s_{1/2}} = 5.41(39) \text{ MeV} \]
1. Two resonances have been found at $E_x = 4.05(20)$ and $6.10(17)$ MeV and associated widths were deduced to be $\Gamma = 1.32(33)$ and $1.52(44)$ MeV respectively.

2. A d-wave neutron function providing support for a J^π of $^3/2^+$ was assigned for both states.

3. Spectroscopic factors were deduced: $C^2S(0^+) = 0.64(20)$ and $0.22(8)$ respectively.

4. The combination of the E and C^2S of the resonances allowed us to determine the ESPE, having a value of $\epsilon_1d_{3/2} = 3.84(30)$ MeV.

5. The combination with previous information of the $\nu 2s1/2$, gives us information on the N=16 shell gap.

$$\Delta_{N=16} = \epsilon_{\nu 1d_{3/2}} - \epsilon_{\nu 2s_{1/2}} = 5.41(39) \text{ MeV}$$

6. We observe that the $\nu 1d_{3/2}$ is less bound that what is expected in the n-rich C isotopes.
Future work

• 1. Apply the Gamow Shell model to take into account the radial extension of the wave function in the unbound states.

• 2. Estimate the contribution of the 2^+ in ^{16}C.

• 3. Combine the location of the $\nu 1d_{3/2}$ with previous results of the energy of the $\nu 1d_{5/2}$ to study the spin-orbit splitting.
E628 Collaboration

a) LPC Caen, Normandie Université’, ENSICAEN, Université’ de Caen Normandie, CNRS/IN2P3, Caen, France
b) Dpt. de Física de Partículas, Univ. of Santiago de Compostela and IGFAE, E-15758, Santiago de Compostela, Spain
c) Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
d) Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
e) Department of Physics, University of Surrey, Guildford GU2 5XH, UK
f) Institut de Physique Nucleaire, IN2P3/CNRS, 91406 Orsay Cedex, France
g) School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
h) GANIL, BP 55027, 14076 Caen Cedex 5, France
i) CEA, Centre de Saclay, IRFU/Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
j) INFN, Laboratori Nazionali del Sud, Via S. Sofia 44, Catania, Italy
k) Departamento de FAMN, Facultad de Física, Universidad de Sevilla, Apartado 1065, E-41080 Sevilla, Spain
l) CNS, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
m) IFIN-HH, P. O. Box MG-6, 76900 Bucharest-Magurele, Romania
NO PART OF THE TALK
In this first analysis we’re assuming that all the C^2S is going to the GS $^{16}C(0^+)$.

We’re still working on gating with the γ to determine how much of the unbounds decays to the excited 2^+ state.

In this stage our results of the C^2S are just upper limits!