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— Rotations, vibrations, pairing
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Expansion methods for open-shell nuclei
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X-EFT Hamiltonian

Secular equation

Partitioning

“simple”
Schrdodinger
equation

Unperturbed state
expansion
series

Correlated WF
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[P(q1) [P(q2)) 7 [P(gn))
Rotation physics Pl (q1)) Pcflcbl iqz/Pﬁch (dn))
Vibration physics q)P°|®(q))
q
Symmetric mean-field
- Degeneracies, missing physics Unperturbed state for open-shells
Deformed mean-field -  Long range collective modes
- Symmetry breaking expansion — Rotations, vibrations, pairing
Multi-determinantal - Symmetry conserving partitioning
- Hybrid scaling - Low dimensional method

PGCM

Multi-reference perturbation theory Symmetry conserving PT

- State specific Access to excited state
- Non orthogonal basis Formalism Inspired from QC
- Large linear system - [Burton20], [Tsuchimochi19]
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Application to ?Ne

First order - PGCM

(d) IM-NCSM
*R. Roth

Reference data
— Experiment
— Quasi-exact IM-NCSM [Roth21]
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Application to ?Ne

First order - PGCM
14

(c) PGCM-2D (d) IM-NCSM (e) Experiment
12 Interaction: [Huther20] *R. Roth
— 57
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Reference data
— Experiment
— Quasi-exact IM-NCSM [Roth21]
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Application to ?Ne

First order - PGCM

14 (c) PGCM-2D (d) IM-NCSM () Experiment

Interaction: [Huther20] *R. Roth

12
57
> 6,
= 8
> —_ 37
o 104(5) 64(10) 164(26)
2 6 17
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4 41+ - 41+ — 41+ T
109(5) 71(6)
+
2 2 T o 27 Tl
81(4) 28(1) 65(3)
o 0f _L o L 0 _L
Reference data Good reproduction of first bands
— Experiment - wrt. IM-NCSM and experiment
— Quasi-exact IM-NCSM [Roth21] - within uncertainties?
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Application to ?Ne

First order - PGCM
14 (c) PGCM-2D (d) IM-NCSM () Experiment
12 Interaction: [Huther20] *R.Roth
— 57
=10 6r 1
> 6,
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o 104(5) 64(10) 164(26)
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109(5) 71(6)
+
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81(4) 28(1) 65(3)
o 0f _L oy _L 0 _L_
Reference data Good reproduction of first bands
— Experiment - wrt. IM-NCSM and experiment
— Quasi-exact IM-NCSM [Roth21] - within uncertainties?

Exaggerated collectivity
— B(E2) off beyond uncertainties
— Missing dynamical correlations

CEA
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First order - PGCM
14

(c) PGCM-2D (d) IM-NCSM (e) Experiment
12 Interaction: [Huther20] *R.Roth
5 -
_10 .. — !
2 ! 6;
= 8
> —_ 37
o 104(5) 64(10) 164(26)
2 6 17
L
4 41+ - 41+ — 41+ T
109(5) 71(6)
+
2 2]—_|— 21 ] 2]-_|_ Tl
81(4) 28(1) 65(3)
o 0f _L oy _L 0 _L_
Reference data Good reproduction of first bands
— Experiment - wrt. IM-NCSM and experiment
— Quasi-exact IM-NCSM [Roth21] - within uncertainties?
Exaggerated collectivity Rich accessible phenomenology
— B(E2) off beyond uncertainties — Transition dens., pair transfers, etc.
— Missing dynamical correlations — Giant resonances (A. Porro poster)

CEA

Mikael Frosini September 21st, 2021



Application to ?Ne

First order - PGCM Second order - PGCM-PT(2)
14 (c) PGCM-2D (d) IM-NCSM () Experiment [Hergert21]
12 Interaction: [Huther20] *R.Roth
_10 . — 21
2 ! 6
= 8
> —_ 37
o 104(5) 64(10) 164(26)
2 6 17
L
4 41+ - 41+ — 41+ T
109(5) 71(6)
+
2 2]—_|— 21 ] 2]-_|_ Tl
81(4) 28(1) 65(3)
o 0f _L oy _L 0 _L_
Reference data Good reproduction of first bands
— Experiment - wrt. IM-NCSM and experiment
— Quasi-exact IM-NCSM [Roth21] - within uncertainties?
Exaggerated collectivity Rich accessible phenomenology
— B(E2) off beyond uncertainties — Transition dens., pair transfers, etc.
— Missing dynamical correlations — Giant resonances (A. Porro poster)
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Application to ?Ne

First order - PGCM Second order - PGCM-PT(2)
14 (c) PGCM-2D (d) IM-NCSM () Experiment [Hergert21]
Interaction: [Huther20] *R.Roth
12 20Ne
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Reference data Good reproduction of first bands 0 10
— Experiment - wrt. IM-NCSM and experiment S [a.u.]
— Quasi-exact IM-NCSM [Roth21] - within uncertainties?
Exaggerated collectivity Rich accessible phenomenology
— B(E2) off beyond uncertainties — Transition dens., pair transfers, etc.
— Missing dynamical correlations — Giant resonances (A. Porro poster)
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First order - PGCM Second order - PGCM-PT(2)
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12 Interaction: [Huther20] 0 2 . SHF
Ne
5 -
10 — ! ~
IR - - >
[ 1 —
= =,
= —_ 37 >,_120
o 104(3) 64(10) 1611(26) 9
2 6 L 17 o)
. 5
N
4 41 T 41+ s 41+ T 83
109(5) 71(6) o
9 23 . = -150
27 T 21— @
81(4) 28(1) 65(3)
o 0f _| of _L of L e
Experiment
Reference data Good reproduction of first bands 0 10
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— Quasi-exact IM-NCSM [Roth21] - within uncertainties?
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— B(E2) off beyond uncertainties — Transition dens., pair transfers, etc.
— Missing dynamical correlations — Giant resonances (A. Porro poster)
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First order - PGCM Second order - PGCM-PT(2)
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ion: U * R. Roth
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— B(E2) off beyond uncertainties — Transition dens., pair transfers, etc.
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First order - PGCM Second order - PGCM-PT(2)
14 (c) PGCM-2D (d) IM-NCSM () Experiment [Hergert21]
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12 Interaction: [Huther20] 0 2 . SHF
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N
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Experiment
Reference data Good reproduction of first bands 0 10
— Experiment - wrt. IM-NCSM and experiment S [a.u.]
— Quasi-exact IM-NCSM [Roth21] - within uncertainties?
Exaggerated collectivity Rich accessible phenomenology
— B(E2) off beyond uncertainties — Transition dens., pair transfers, etc.
— Missing dynamical correlations — Giant resonances (A. Porro poster)
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Application to ?Ne

First order - PGCM Second order - PGCM-PT(2)
14 (c) PGCM-2D (d) IM-NCSM (e) Experiment [Hergert21]
ion: U * R. Roth
12 Interaction: [Huther20] 0 20 L SHF
Ne
57 10.3 (
10 _, — — A dHFB
% 61 ............. 61'" L % 55 ﬁ. PGCM
= =,
o 104(3) 64(10) 1611(26) 9
2 6 L 17 o)
= o 42,5
N :
4 e 41+ S 4::- T 83
109(5) 71(6) o
+ [ £
2 5+ 27 — 27 L m —150
L e 28(1) ) « PGCM-PT(2)
0 0f _I o _L of L e
Experiment
Reference data Good reproduction of first bands 0 10
— Experiment - wrt. IM-NCSM and experiment S [a.u.]
— Quasi-exact IM-NCSM [Roth21] - within uncertainties?
Investigation of correlations
- Dyn. corr. essential for description of BE
Exaggerated collectivity Rich accessible phenomenology - Motivates theoretical modelling
— B(E2) off beyond uncertainties — Transition dens., pair transfers, etc.
— Missing dynamical correlations — Giant resonances (A. Porro poster)
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Application to ?Ne

First order - PGCM
14 (c) PGCM-2D (d) IM-NCSM (e) Experiment
12 Interaction: [Huther20] *R. Roth
57
3 6
=,
GEJ’ 64(10) 164(26)
k= L 17
4]-_i- e 4]-'|- ——
71(6)
+
2 2]—_|— 21 : 2]-I- T{
28(1) 65(3)
o OF of _L 0 _L
Reference data

— Experiment

Good reproduction of first bands
— Quasi-exact IM-NCSM [Roth21]

wrt. IM-NCSM and experiment
within uncertainties?

Exaggerated collectivity Rich accessible phenomenology
— B(E2) off beyond uncertainties — Transition dens., pair transfers, etc.
— Missing dynamical correlations

— Giant resonances (A. Porro poster)
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Second order - PGCM-PT(2)

[Hergert21]
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PGCM  PGCM-PT Exp.
Collectivity

Little correction expected

Good account static + dynamical
Small discrepancies

Lack of collective coordinates?



a Conclusions & outlooks

1 PGCM-PT formalism
(1 New multi-reference perturbation theory
1 Applicable to
(1 Doubly open-shell nuclei
(1 Ground and excited states
1 Correlations in nuclear structure calculations
1 Long range (static) vs. short range (dynamical) in first approximation
1 Convenient but arbitrary boundary
(1 Optimal description of collective modes via PGCM...
] ... to be enriched in perturbation?
1 Systematic uncertainties quantifications in ab initio methods
1 Mid-term goal of ab initio methods
] Steady progress in the last few years
(] To be enriched in a systematic way
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Outline of possible developments of PGCM-PT(2)

Validation of PGCM-PT(2) for open-shells

Extension to other symmetries

Non perturbative extensions of PGCM-PT(2)

y

Optimization for realistic MS

Y

Application to shell-model Hamiltonians Description of shape coexistence in Selenium

"\
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Derivation and benchmarking

Hiaher rank niiclear forececs

1N and 2N always treated explicitly
3N (4N) manageable at HF(B) level
- Low complexity
- Symmetry reductions
BMF : NO2B approximation
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- Low complexity
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Derivation and benchmarking

Hiaher rank niiclear forececs

1 a al 1 aq ap aj ap 1 ajazas aj azas daj . dj 1 ap ay . dpap 1 ayazas . djapzas .

1
1N and 2N always treated explicitly O = 2% Con 2 Oty Conty * (312 Obababy Contoby T O F (3%t Gy T a0y Cob P (33 %nbabs T Cbytabs
3N (4N) manageable at HF(B) level

- Low complexity

- Symmetry reductions
BMF : NO2B approximation
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Derivation and benchmarking

Hiaher rank niiclear forececs

— 1 a ~a1 1 ajdy ~aia 1 a4axdas ~ai;azas _ ap , ~41 , 1 araz , ~aiaz 1 ayazas , ~apapas |
1N and 2N always treated explicitly O= 12 % Cor ¥ (52 Ot Cont + (312 Orb20s Corbabs O = R Con 2% Coube (52 Oubats * Cortebs
3N (4N) manageablg at HF(B) level Normal ordering wrt. |d)SD N ar o

- Low complexity 1 1 ak

a:--a n ®(n—k)
o p® = Z [o( ). p® ]

- Symmetry reductions £ (n—k)!
BMF : NO2B approximation

by by

Tensor product <

CEA Mikael Frosini September 21st, 2021



Derivation and benchmarking

Expansive storage + runtime
Hiaher rank niiclear foreces l |

O — 1 al aj +— 1 alaz aj az A 1 31 azas ~djdas al ol 1 oalaz apap | e 1 213233 dapapzas |
- (1!) bl by (2|)2 b1b2 by by (3|)2 b1b2b3 b1b2b3 (1|)2 b1 by * (2|) byby * “biby * (3 )2 b1b2b3 b1b2b3 *

— O=

1N and 2N always treated explicitly
3N (4N) manageable at HF(B) level .
i Poniconplaxity Normal ordering wrt. |®)SD a1 ak[ o) i 1 [o(”)-pc"@(”_k’rlmak
- Symmetry reductions = (n—k)!
BMF : NO2B approximation

by by

Tensor product <

CEA Mikael Frosini September 21st, 2021



Derivation and benchmarking

Expansive storage + runtime
Hiaher rank niiclear foreces l |

O — 1 al Cal +— 1 alaz aj az A 1 31 azas ~djdas al ol 1 oalaz apap | e 1 213233 dapapzas |
- (1!) bl by (2|)2 b1b2 by by (3|)2 b1b2b3 b1b2b3 (1|)2 b1 by * (2|) byby * “biby * (3 )2 b1b2b3 b1b2b3 *

— O=

1N and 2N always treated explicitly

3N (4N) manageable at HF(B) level . N
C Lo Gty Normal ordering wrt. - [®)SD ol 3 o] = Z : [O(”)-pq)@(n_k):lal“.ak .
- Symmetry reductions — (n—k)! by by

BMF : NO2B approximation 1 1
pp HNOZB[pcD]Et_pcb_l_zv_pcb.pf:b_'_gw.pf:b_pCD_pcb Tensor product <
NO2B & o) 1 ¢ P
+t+v-p +=—w-p -
Keep only k<3 TR
+veo+w-p®
+0
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Derivation and benchmarking

Expansive storage + runtime
Hiaher rank niiclear foreces l |

O — 1 al Cal +— 1 alaz aj az A 1 31 azas ~djdas al ol 1 oalaz apap | e 1 213233 dapapzas |
- (1!) bl by (2|)2 b1b2 by by (3|)2 b1b2b3 b1b2b3 (1|)2 b1 by * (2|) byby * “biby * (3 )2 b1b2b3 b1b2b3 *

— O=

1N and 2N always treated explicitly

3N (4N) manageable at HF(B) level . N
C Lo Gty Normal ordering wrt. - [®)SD ol 3 o] = Z : [O(”)-pq)@(n_k):lal“.ak .
- Symmetry reductions — (n—k)! by by

BMF : NO2B approximation 1 1
pp HNOZB[pcD]Et_pcb_l_zv_pcb.pf:b_'_gw.pf:b_pCD_pcb Tensor product <
NO2B « Pl 0
Keep only k<3 BT ¢
+veo+w-p®
+0 Three-body discarded beyond mean-field
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Hiaher rank niiclear forececs

1N and 2N always treated explicitly
3N (4N) manageable at HF(B) level

- Low complexity
= Symmetry reductions
BMF : NO2B approximation

I imite of NO?2R

In open-shells
- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

CEA

Derivation and benchmarking

oAl c? 4 1 02132 2132 g o
by 71 (p1y2 Thiba Tbibz T3y Tbibabs b1 b2 b3

NO2B <
Keep only k<3

Mikael Frosini

Expansive storage + runtime
[ ]

031, a1,+ 1 oalaZ, a1a2,+ il oalaza3, 41 apas |
(112 7b1 " Thr " T(2n)2 Tbiba * by by ERI)2 Eb1babs © b1 babs &

S| EREY) ~E ERER > 0=

Normal ordering wrt. |®)SD N [ rl...ak

ai-a 1 ®(n—k)
1@k Py _ E (n). P
obl...bk [P ] - — (n_ k)! o p

by by

1 1
HNOZB[pCD] = t.p'ib + z\/-‘j[b -pcb + QW'F’ED 'pCD 'PCD Tensor pFOdUCt <

1
+t+ v-pcb +§w-p¢-pcb
+veo+w-p®
+0 Three-body discarded beyond mean-field



Derivation and benchmarking

Expansive storage + runtime

Hiaher rank niiclear farces | |

1 a a 1 a a ajga 1 ajaza aj aza a , ~4a1 , 1 ayjaz , ~apdy 1 ayazasz , ~4ayapzas |
1N and 2N always treated explicitly O = [11)2%: Cor * (212 %16 Cor b, €312 bubabis Coaabs > 0= g% Coy 3z %0; ¢ Coro, {512 Obubabs  Conbobs
S () manageable. it [IF(E) et Normal ordering wrt. |®)SD Ny ay--ay

- Low complexity ol B %= ) [ o). pcD@(”"‘)] _
- Symmetry reductions Tk £ (n—k)! by by
BMF : NO2B approximation 1 1
PP HNOZB[pq’]Et-p¢+zv-p¢-p¢+§w-p¢-p¢-pq’ Tensor product <
NO2B < P l b P
Keep only k<3 BT ¢
(0]
+v-+tw-p
| imits of NO?2R 40

Three-body discarded beyond mean-field
In open-shells

- Expansive calculations

- SB Hamiltonians

- Intricate workarounds

In medium interactions

Involve only 1-body density matrices
Symmetric truncated operator
SP basis — start other calculations
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Hiaher rank niiclear forececs

1N and 2N always treated explicitly
3N (4N) manageable at HF(B) level
- Low complexity
- Symmetry reductions
BMF : NO2B approximation

I imite of NO?2R

In open-shells
- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices
Symmetric truncated operator
SP basis — start other calculations

CEA

Derivation and benchmarking

Expansive storage + runtime
[ ]

— 1 a ~a1 ajdy ~aia adaxdas ~ajazas ) _ ap , ~41 , 1 araz , ~aiaz 1 aiyazasz , ~apapas |
O = (1!)2 Obl by + (2!)2 ob1b2 by by t (3!)2 Obl b2b3 b1b2b3 O - (1!)20b1 ' byt +(2|)2 ob1b2 ' “byby * +(3!)2 ob1b2b3 * b1b2b3 *
i N
Normal ordering wrt. |®)SD s o 1 (k|3
onmle®l=) e .
— n ) by by

1 1
HNOZB[pCD] = t.p'ib + z\/-‘j[b -pcb + QW'F’ED 'pCD 'PCD Tensor pr0dUCt <

NO2B « Pl 0
Keep only k<3 BT ¢
+veo+w-p®

+0 Three-body discarded beyond mean-field

Playing with contractions
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Derivation and benchmarking

Expansive storage + runtime

Hiaher rank niiclear farces | |

— 1 a1 aj 1 a1 az ~ajap 1 a1 aras ~Aa;azas ) a1 el 1 al az araz | 1 313233 diazas |
1N and 2N always treated explicitly O = 12 % Cor * (212 Or2 Corb, Tgy2 Obatabs Corbats O = 1yz0 Con gz Oba ¢ Cor, Eg2%bubabs * Coitabs
3N (4N) manageable at HF(B) level Normal ordering wrt. |&)SD N ay-ay

- Low complexity a1 ak[ @) 1 o). ;)
p .
- Symmetry reductions Zk( — k)! [ ]bl---bk

BMF : NO2B approximation 1 1
PP HNOZB[pq’]Et-p¢+zv-p¢-p¢+§w-p¢-p¢-pq’ Tensor product <
NO2B & o 1 d P
+t+v-p +=w-p -
Keep only k<3 TR
+veo+w-p®
| imits of NO?2R 40

Three-body discarded beyond mean-field
In open-shells
- Expansive calculations

- SB Hamiltonians Playing with contractions
- Intricate workarounds Arbitrary 1-body density matrixp
N
1 a u-a
aa (n). ,®(n—k) |71k
oy-5, ] = Zk( — k). [0,
N
In medium interactions ay-a, _ N (D" ay-a,
obi'--bn = Z (= n)! [ [P] P ] by
Involve only 1-body density matrices t=n

Symmetric truncated operator
SP basis — start other calculations
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Derivation and benchmarking

Expansive storage + runtime

Hiaher rank niiclear farces | |

— 1 a1 aj 1 a1 az ~ajap 1 a1 aras ~Aa;azas ) a1 el 1 al az araz | 1 313233 diazas |
1N and 2N always treated explicitly O = 12 % Cor * (212 Or2 Corb, Tgy2 Obatabs Corbats O = 1yz0 Con gz Oba ¢ Cor, Eg2%bubabs * Coitabs
3N (4N) manageable at HF(B) level Normal ordering wrt. |&)SD N ay-ay

- Low complexity a1 ak[ @) 1 o). ;)
p .
- Symmetry reductions Zk( — k)! [ ]bl---bk

BMF : NO2B approximation 1 1
PP HNOZB[pq’]Et-p¢+zv-p¢-p¢+§w-p¢-p¢-pq’ Tensor product <
NO2B « 0Py L Pl
Keep only k<3 BT ¢
o +veo+w-p®
Limits of NO2R +0 Three-body discarded beyond mean-field
In open-shells
- Expansive calculations . . .
- SB Hamiltonians Playing with contractions
- Intricate workarounds Arbltrary 1- Ody denSIty matrixp
N
1 ai--a
aay (n), p@(n—k) 3173k
ov-x )= Zk( —k)! [0 ]bl---bk ’
N
H i i aj--ap (_l)l_n a1dn
In medium interactions o=y — (o] po1] .
Involve only 1-body density matrices t=n
Symmetric truncated operator _
SP basis — start other calculations Back and forth transformation P

No Wick’s theorem involved
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Derivation and benchmarking

Expansive storage + runtime

Hiaher rank niiclear farces | |
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1N and 2N always treated explicitly O = 12 % Cor * (212 Or2 Corb, Tgy2 Obatabs Corbats O = 1yz0 Con gz Oba ¢ Cor, Eg2%bubabs * Coitabs
3N (4N) manageable at HF(B) level Normal ordering wrt. |&)SD N ay-ay

- Low complexity a1 ak[ @) 1 o). ;)
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- Symmetry reductions Zk( — k)! [ ]bl---bk
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Symmetric truncated operator _
SP basis — start other calculations Back and forth transformation P

No Wick’s theorem involved
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1N and 2N always treated explicitly
3N (4N) manageable at HF(B) level
- Low complexity
- Symmetry reductions
BMF : NO2B approximation

I imite of NO?2R

In open-shells
- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices
Symmetric truncated operator
SP basis — start other calculations
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Derivation and benchmarking
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Approximation
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6[p]= 0 for (> k.

Specific case of the interaction
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Back and forth transformation P
No Wick’s theorem involved
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3N (4N) manageable at HF(B) level
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Derivation and benchmarking

Expansive storage + runtime
Hiaher rank niiclear farces | |

1 a ~a1 1 a)az ~ayapz 1 d1a34d3 ~d14a343 _ L ay , ~41 , L a dy  ~a1dp L ay4zdas | ~4ajaras |
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3N (4N) manageable at HF (R -Llaxal

- H | l n ®(n—k) alu.ak
Low complexity e Benchmark = [O( ).o® ] -
- Symmetry reductions . r : by by
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Tensor product <

e Low error at converged e,
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- SB Hamiltonians . on
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is — UTAtIoONS Do oo ToT T e TOTO T T rereroT T = T )

SP basis start other calc No Wick’s theorem involved h(l)[p] = ¢ _ §W(3)'p®(2), Reduces to NO2B in closed shells
_ > 5 3 Generalizable ton > 3
h( )[P] = v( )+ W( )'P:

CEA Mikael Frosini




@228 Systematics in the Neon chain

CEA Mikael Frosini September 21st, 2021



Systematics in the Neon chain

2* and 4* excitation energies
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= Dynamical correlations
= Static correlations?
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Systematics in

2* and 4* excitation energies

% PGCM 3°Ne Intruder band
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Special case of 3°Ne
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MR-IMSRG evolution + PHFB-PT(2) rotational spectra

—— PHFB
—/ --- PGCM

> . —— PHFB-PT(2)
26 - PGCM-PT(2)
¥ 5

3

4

3

B 2

=,
T\T

w1

<

00.3 04 05 06 0703 04 05 06 0703 04 05 06 0.7

B> B> B>

CEA Mikael Frosini September 21st, 2021 _



Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

CEA Mikael Frosini September 21st, 2021 “



Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

MR-IMSRG [Heraert161

Nucleus-dependent preprocessing of H

H(s)= UT(s)HU(s), s — oo
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-- Approaches ground state of H(s — oo)
Recasting dynamical corr. into H(s)
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MR-IMSRG [Heraert161

Nucleus-dependent preprocessing of H

H(s)= UT(s)HU(s), s — oo

Decouples |G)(O))from Q space
-- Approaches ground state of H(s — oo)
Recasting dynamical corr. into H(s)

PGCM + MR-IMSRG [Ya020]
- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations
and the Neutrinoless Double Beta Decay of ¥Ca

I M. Yao®,"" B. Bally,*" J. Engel®,** R. Wirth®,'S T.R. Rodriguez®,*! and H. Hergent®'*!
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