

DE LA RECHERCHE À L'INDUSTRIE

Ab initio description of doubly open-shell nuclei via multi-reference expansion methods

Supervisors: Thomas Duguet CEA-DRF Jean-Paul Ebran CEA-DAM Vittorio Somà CEA-DRF

DRF/IRFU/LENA Mikael Frosini

Colloque GANIL 2021

Ab initio microscopic description of nuclear structure

Mikael Frosini

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom

Cea

Ab initio microscopic description of nuclear structure

- 1) A structure-less nucleons as degrees of freedom
- 2) Interaction systematically expanded (EFT) consistently with QCD

 $C 2 \mathcal{D}$

- 1) A structure-less nucleons as degrees of freedom
- 2) Interaction systematically expanded (EFT) consistently with QCD
- 3) Solve A-body Schrödinger equation to relevant accuracy

- 1) A structure-less nucleons as degrees of freedom
- 2) Interaction systematically expanded (EFT) consistently with QCD
- 3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of *ab initio* **microscopic** description
 - **Consistency** (unified theoretical framework)
 - **Systematicity** (complete phenomenology)
 - Accuracy & precision (with respect to experiment)

- 1) A structure-less nucleons as degrees of freedom
- 2) Interaction systematically expanded (EFT) consistently with QCD
- 3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of *ab initio* **microscopic description**
 - **Consistency** (unified theoretical framework)
 - **Systematicity** (complete phenomenology)
 - Accuracy & precision (with respect to experiment)

Ab initio microscopic description of nuclear structure

- 1) A structure-less nucleons as degrees of freedom
- 2) Interaction systematically expanded (EFT) consistently with QCD
- 3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of *ab initio* **microscopic description**
 - **Consistency** (unified theoretical framework)
 - **Systematicity** (complete phenomenology)
 - Accuracy & precision (with respect to experiment)

9

- 1) A structure-less nucleons as degrees of freedom
- 2) Interaction systematically expanded (EFT) consistently with QCD
- 3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of *ab initio* **microscopic description**
 - **Consistency** (unified theoretical framework)
 - **Systematicity** (complete phenomenology)
 - Accuracy & precision (with respect to experiment)

Ab initio microscopic description of nuclear structure

- 1) A structure-less nucleons as degrees of freedom
- 2) Interaction systematically expanded (EFT) consistently with QCD
- 3) Solve A-body Schrödinger equation to relevant accuracy

Long term endeavor of *ab initio* **microscopic description**

- **Consistency** (unified theoretical framework)
- **Systematicity** (complete phenomenology)
- Accuracy & precision (with respect to experiment)

Ab initio microscopic description of nuclear structure

- 1) A structure-less nucleons as degrees of freedom
- 2) Interaction systematically expanded (EFT) consistently with QCD
- 3) Solve A-body Schrödinger equation to relevant accuracy

• Long term endeavor of *ab initio* **microscopic description**

- **Consistency** (unified theoretical framework)
- **Systematicity** (complete phenomenology)
- Accuracy & precision (with respect to experiment)

Ab initio microscopic description of nuclear structure

- A structure-less nucleons as degrees of freedom 1)
- Interaction systematically expanded (EFT) consistently with QCD 2)
- 3) Solve A-body Schrödinger equation to relevant accuracy

Long term endeavor of ab initio microscopic description

- **Consistency** (unified theoretical framework) Ο
- **Systematicity** (complete phenomenology) Ο
- Accuracy & precision (with respect to experiment) Ο

Ab initio microscopic description of nuclear structure

- A structure-less nucleons as degrees of freedom 1)
- Interaction systematically expanded (EFT) consistently with QCD 2)
- 3) Solve A-body Schrödinger equation to relevant accuracy

Long term endeavor of ab initio microscopic description

- **Consistency** (unified theoretical framework) Ο
- **Systematicity** (complete phenomenology) Ο
- Accuracy & precision (with respect to experiment) Ο

- Weakly correlated systems
- Symmetric mean-field methods

- Weakly correlated systems
- Symmetric mean-field methods

Challenges in open-shells

- Strongly correlated systems
- Deformation, mp-mh \rightarrow long range

Expansion methods for open-shell nuclei

CEA

Expansion methods for open-shell nuclei

CEA

Cea

Reference data

 \rightarrow Experiment

 \rightarrow Quasi-exact IM-NCSM [Roth21]

____ 5_1^-

 $\underbrace{ \begin{array}{c} - \\ 164(26) \end{array}}^{-31} 3_1^{-} \\ 1_1^{-} \end{array}$

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment * R. Roth Interaction: [Hüther20] 12 5_{1}^{-} 5_{1}^{-} Energy [MeV] 61+ 6_{1}^{+} 217(8) 3_{1}^{-} 984(67) 3_{1}^{-} 104(5) $\stackrel{----}{\xrightarrow{}} \mathbf{J}_1^- \\ \stackrel{164(26)}{\xrightarrow{}} \mathbf{1}_1^-$ 64(10) 182(6) 1_{1}^{-}t 41 4_{1}^{+} 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 81(4) 65(3) 0_{1}^{+} 0_{1}^{+} ļ 0_{1}^{+} 1 0

Reference data

cea

 \rightarrow Experiment

 \rightarrow Quasi-exact IM-NCSM [Roth21]

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment * R. Roth Interaction: [Hüther20] 12 5_{1}^{-} 5_{1}^{-} Energy [MeV] 61+ 61+ 217(8) 3_{1}^{-} 3_{1}^{-} 984(67) 104(5) 64(10) 182(6) 1_{1}^{-} 4_{1}^{+} 4_{1}^{+} 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 65(3) 81(4) 0_{1}^{+} 0_{1}^{+} 0_{1}^{+} Ţ 0

Reference data

Cea

- \rightarrow Experiment
- → Quasi-exact IM-NCSM [Roth21]

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment Interaction: [Hüther20] * R. Roth 12 5_{1}^{-} 5_{1}^{-} 10 6_{1}^{+} Energy [MeV] 61+ 217(8) 8 3_{1}^{-} 3_{1}^{-} 984(67) 104(5) 64(10) 182(6) 6 1_{1}^{-} 4_{1}^{+} 4_{1}^{+} 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 65(3) 81(4) 01+ 0_{1}^{+} 0_{1}^{+} Ţ 0

Reference data

C22

- \rightarrow Experiment
- \rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- → Missing dynamical correlations

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment Interaction: [Hüther20] * R. Roth 12 5_{1}^{-} 5_{1}^{-} 10 6_{1}^{+} Energy [MeV] 6_{1}^{+} 217(8) 8 3_{1}^{-} 984(67) 3_{1}^{-} 104(5) 164(26) 64(10) 182(6) 6 1_{1}^{-} 1_{1}^{-} - 622(44) 1724(126) 4_{1}^{+} 4_{1}^{+} 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 65(3) 81(4) 01+ 0_{1}^{+} 01+ 0

Reference data

- \rightarrow Experiment
- \rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- → Missing dynamical correlations

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology

- \rightarrow Transition dens., pair transfers, etc.
- \rightarrow Giant resonances (**A. Porro** poster)

Reference data

- \rightarrow Experiment
- \rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- \rightarrow Missing dynamical correlations

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology

- \rightarrow Transition dens., pair transfers, etc.
- \rightarrow Giant resonances (**A. Porro** poster)

Second order - PGCM-PT(2) [Hergert21]

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment * R. Roth Interaction: [Hüther20] 12 5_{1}^{-} 10 6_{1}^{+} Energy [MeV] 6_{1}^{+} 217(8) 8 984(67) 3_{1}^{-} 104(5) 64(10) 182(6) 6 1_{1}^{-} 41+ 4_{1}^{+} 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 65(3) 81(4) 0_{1}^{+} 01+ 0_{1}^{+} 0

Reference data

- \rightarrow Experiment
- → Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- → Missing dynamical correlations

Good reproduction of first bands

wrt. IM-NCSM and experiment -

 5_{1}^{-}

 3_{1}^{-}

 1_{1}^{-}

164(26)

within uncertainties?

Rich accessible phenomenology

- \rightarrow Transition dens., pair transfers, etc.
- → Giant resonances (**A. Porro** poster)

Second order - PGCM-PT(2) [Hergert21]

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment * R. Roth Interaction: [Hüther20] 12 5_{1}^{-} 10 6_{1}^{+} Energy [MeV] 6_{1}^{+} 217(8) 8 984(67) 3_{1}^{-} 104(5) 64(10) 182(6) 6 1_{1}^{-} 4_{1}^{+} 4_{1}^{+} 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 65(3) 81(4) 0_{1}^{+} 01+ 0_{1}^{+} 0

Reference data

- \rightarrow Experiment
- → Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- → Missing dynamical correlations

Good reproduction of first bands

wrt. IM-NCSM and experiment -

 5_{1}^{-}

 3_{1}^{-}

 1_{1}^{-}

164(26)

within uncertainties?

Rich accessible phenomenology

- \rightarrow Transition dens., pair transfers, etc.
- → Giant resonances (**A. Porro** poster)

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment * R. Roth Interaction: [Hüther20] 12 5_{1}^{-} 10 6_{1}^{+} Energy [MeV] 6_{1}^{+} 217(8) 8 984(67) 3_{1}^{-} 104(5) 64(10) 182(6) 6 1_{1}^{-} - 622(44) 1724(126) 41 4_{1}^{+} 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 65(3) 81(4) 0_{1}^{+} 01+ 0_{1}^{+} 0

Reference data

- \rightarrow Experiment
- → Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- → Missing dynamical correlations

Good reproduction of first bands

wrt. IM-NCSM and experiment -

 5_{1}^{-}

 3_{1}^{-}

 1_{1}^{-}

164(26)

within uncertainties?

Rich accessible phenomenology

- \rightarrow Transition dens., pair transfers, etc.
- → Giant resonances (**A. Porro** poster)

Second order - PGCM-PT(2) [Hergert21]

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment * R. Roth Interaction: [Hüther20] 12 5_{1}^{-} 10 6_{1}^{+} Energy [MeV] 6_{1}^{+} 217(8) 8 984(67) 3_{1}^{-} 104(5) 64(10) 182(6) 6 1_{1}^{-} - 622(44) 1724(126) 41+ 4_{1}^{+} 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 65(3) 81(4) 0_{1}^{+} 0_{1}^{+} 0_{1}^{+} 0

Reference data

- \rightarrow Experiment
- → Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- → Missing dynamical correlations

Good reproduction of first bands

wrt. IM-NCSM and experiment -

 5_{1}^{-}

 3_{1}^{-}

 1_{1}^{-}

164(26)

within uncertainties?

Rich accessible phenomenology

- \rightarrow Transition dens., pair transfers, etc.
- → Giant resonances (**A. Porro** poster)

First order - PGCM 14 (c) PGCM-2D (d) IM-NCSM (e) Experiment * R. Roth Interaction: [Hüther20] 12 5_{1}^{-} 10 6_{1}^{+} Energy [MeV] 6_{1}^{+} 217(8) 8 984(67) 3_{1}^{-} 104(5) 64(10) 182(6) 6 1_{1}^{-} 41 41+ 4_{1}^{+} 4 71(6) 109(5) 2_{1}^{+} 2 2_{1}^{+} 2_{1}^{+} 28(1) 65(3) 81(4) 0_{1}^{+} 0_{1}^{+} 0_{1}^{+} 0

Reference data

- \rightarrow Experiment
- → Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- → Missing dynamical correlations

Good reproduction of first bands

wrt. IM-NCSM and experiment -

 5_{1}^{-}

 3_{1}^{-}

164(26)

within uncertainties?

Rich accessible phenomenology

- \rightarrow Transition dens., pair transfers, etc.
- \rightarrow Giant resonances (**A. Porro** poster)

Second order - PGCM-PT(2) [Hergert21]

Investigation of correlations

- Dyn. corr. essential for description of BE
- Motivates theoretical modelling

52

Reference data

- \rightarrow Experiment
- \rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

- \rightarrow B(E2) off beyond uncertainties
- → Missing dynamical correlations

Good reproduction of first bands

- wrt. IM-NCSM and experiment

 5_{1}^{-}

 3_{1}^{-}

- within uncertainties?

Rich accessible phenomenology

- \rightarrow Transition dens., pair transfers, etc.
- \rightarrow Giant resonances (**A. Porro** poster)

Second order - PGCM-PT(2)

Collectivity

- Little correction expected
- Good account static + dynamical
- Small discrepancies
 - Lack of collective coordinates?

□ PGCM-PT formalism

- New multi-reference perturbation theory
- □ Applicable to
 - Doubly open-shell nuclei
 - □ Ground and **excited states**
- □ Correlations in nuclear structure calculations
 - □ Long range (**static**) vs. short range (**dynamical**) in first approximation
 - Convenient but **arbitrary boundary**
 - Optimal description of collective modes via PGCM...
 - \Box ... to be enriched in perturbation?
- □ Systematic uncertainties quantifications in *ab initio* methods
 - □ Mid-term goal of *ab initio* methods
 - □ Steady progress in the last few years
 - □ To be enriched in a systematic way

Thank you for your attention!

Thomas Duguet Vittorio Somà Andrea Porro

Jean-Paul Ebran Yann Beaujeault-Taudiere

Benjamin Bally

Heiko Hergert

Robert Roth Alexander Tichai

Pepijn Demol

Ceal Outline of possible developments of PGCM-PT(2)

Validation of PGCM-PT(2) for open-shells Extension to other symmetries Non perturbative extensions of PGCM-PT(2) Optimization for realistic MS Application to shell-model Hamiltonians Description of shape coexistence in Selenium

- □ [Burton20] J. Chem. Theory Comput. 2020, 16, 9, 5586–5600 (2020)
- [Tsuchimochi19] J. Chem. Theory Comput. 2019, 15, 12, 6688–6702 (2019)
- □ [Hüther20] Physics Letters B Volume 808, 135651 (2020)
- [Roth21] IM-NSCM & FCI calculation, *private communication*
- [Choi11] SIAM Journal on Scientific Computing, Volume 33, Issue 4, 1810-1836, (2011)
- [Hergert21] MR-IMSRG evolved Hamiltonian files, *private communication*

1N and 2N always treated explicitly **3N** (4N) manageable at HF(B) level

- Low complexity
- Symmetry reductions

BMF : **NO2B** approximation

1N and 2N always treated explicitly **3N** (4N) manageable at HF(B) level

- Low complexity
- Symmetry reductions

BMF : **NO2B** approximation

 $O \equiv \frac{1}{(1!)^2} o_{b_1}^{a_1} C_{b_1}^{a_1} + \frac{1}{(2!)^2} o_{b_1 b_2}^{a_1 a_2} C_{b_1 b_2}^{a_1 a_2} + \frac{1}{(3!)^2} o_{b_1 b_2 b_3}^{a_1 a_2 a_3} C_{b_1 b_2 b_3}^{a_1 a_2 a_3}$

1N and 2N always treated explicitly **3N** (4N) manageable at HF(B) level

- Low complexity

- Symmetry reductions

BMF : **NO2B** approximation

$$O = \frac{1}{(1!)^2} o_{b_1}^{a_1} C_{b_1}^{a_1} + \frac{1}{(2!)^2} o_{b_1 b_2}^{a_1 a_2} C_{b_1 b_2}^{a_1 a_2} + \frac{1}{(3!)^2} o_{b_1 b_2 b_3}^{a_1 a_2 a_3} C_{b_1 b_2 b_3}^{a_1 a_2 a_3} C_{b_1 b_2 b_3}^{a_1 a_2 a_3} \longrightarrow O = \frac{1}{(1!)^2} o_{b_1}^{a_1} : C_{b_1}^{a_1} : C_{b_1 b_2}^{a_1} : C_{b_1 b_2}^{a_1 a_2} : C_{b_1 b_2}^{a_1 a_2} : C_{b_1 b_2 b_3}^{a_1 a_2 a_3} : C_{b_1 b_2 b_3}^{a_1$$

1N and 2N **always treated** explicitly **3N** (4N) **manageable** at HF(B) level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

Cea

Cea

- SB Hamiltonians
- Intricate workarounds

Evpanoiv

- **Expansive** calculations
- **SB** Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

Limits of NO2B

In open-shells

- **Expansive** calculations
- **SB** Hamiltonians
- Intricate workarounds

Playing with contractions

In medium interactions

Involve **only 1-body** density matrices Symmetric truncated operator SP basis -> start other calculations

1N and 2N always treated explicitly 3N (4N) manageable at HF(B) level

- Low complexity

Symmetry reductions

BMF : NO2B approximation

Limits of NO2B

In open-shells

- **Expansive** calculations
- **SB** Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

Playing with contractions

Arbitrary 1-body density matrix ρ

$$\mathbf{e}_{b_{1}\cdots b_{k}}^{a_{1}\cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!} \left[o^{(n)} \cdot \rho^{\otimes(n-k)} \right]_{b_{1}\cdots b_{k}}^{a_{1}\cdots a_{k}},$$
$$\mathbf{e}_{b_{1}\cdots b_{n}}^{a_{1}\cdots a_{n}} = \sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!} \left[\mathbf{e}^{(l)}[\rho] \cdot \rho^{\otimes(l-n)} \right]_{b_{1}\cdots b_{n}}^{a_{1}\cdots a_{n}}.$$

Higher rank nuclear forces

1N and 2N **always treated** explicitly **3N** (4N) **manageable** at HF(B) level

- Low complexity

Symmetry reductions

BMF : NO2B approximation

Limits of NO2B

In open-shells

- **Expansive** calculations
- **SB** Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

Playing with contractions

Arbitrary 1-body density matrix ρ

$$\mathbf{o}_{b_{1}\cdots b_{k}}^{a_{1}\cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!} \left[o^{(n)} \cdot \rho^{\otimes (n-k)} \right]_{b_{1}\cdots b_{k}}^{a_{1}\cdots a_{k}},$$
$$\mathbf{o}_{b_{1}\cdots b_{n}}^{a_{1}\cdots a_{n}} = \sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!} \left[\mathbf{o}^{(l)}[\rho] \cdot \rho^{\otimes (l-n)} \right]_{b_{1}\cdots b_{n}}^{a_{1}\cdots a_{n}}.$$

Back and forth transformation No Wick's theorem involved

Intricate workarounds

In medium interactions

Involve **only 1-body** density matrices Symmetric truncated operator SP basis -> start other calculations

Playing with contractions

Arbitrary 1-body density matrix ρ

$$\mathbf{o}_{b_{1}\cdots b_{k}}^{a_{1}\cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!} \left[o^{(n)} \cdot \rho^{\otimes(n-k)} \right]_{b_{1}\cdots b_{k}}^{a_{1}\cdots a_{k}},$$
$$\mathbf{o}_{b_{1}\cdots b_{n}}^{a_{1}\cdots a_{n}} = \sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!} \left[\mathbf{o}^{(l)}[\rho] \cdot \rho^{\otimes(l-n)} \right]_{b_{1}\cdots b_{n}}^{a_{1}\cdots a_{n}}.$$

Back and forth transformation No Wick's theorem involved

 $\bar{\mathbf{o}}^{(l)}[\rho] \equiv \mathbf{o}^{(l)}[\rho]$ for $l \leq k$, $\mathbf{\bar{o}}^{(l)}[\rho] \equiv 0 \text{ for } l > k.$

Back and forth transformation No Wick's theorem involved

SP basis -> start other calculations

- **SB** Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations **Playing with contractions**

Arbitrary 1-body density matrix ρ

$$\mathbf{o}_{b_{1}\cdots b_{k}}^{a_{1}\cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!} \left[o^{(n)} \cdot \rho^{\otimes(n-k)} \right]_{b_{1}\cdots b_{k}}^{a_{1}\cdots a_{k}},$$
$$\mathbf{o}_{b_{1}\cdots b_{n}}^{a_{1}\cdots a_{n}} = \sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!} \left[\mathbf{o}^{(l)}[\rho] \cdot \rho^{\otimes(l-n)} \right]_{b_{1}\cdots b_{n}}^{a_{1}\cdots a_{n}}.$$

Back and forth transformation No Wick's theorem involved

Approximation

$$\bar{\mathbf{o}}^{(l)}[\rho] \equiv \mathbf{o}^{(l)}[\rho] \text{ for } l \le k,$$

$$\bar{\mathbf{o}}^{(l)}[\rho] \equiv 0 \text{ for } l > k. \longrightarrow \text{ transformed back to sp basis}$$

Specific case of the interaction

ρ

 $\bar{h}^{(2)}[\rho] \equiv v^{(2)} + w^{(3)} \cdot \rho$

Mikael Frosini

CEA

2⁺ and 4⁺ excitation energies

Good account of ¹⁸⁻²⁴Ne Missing physics for ²⁶⁻³⁰Ne

- Dynamical correlations
- Static correlations?

2⁺ and 4⁺ excitation energies

2⁺ and 4⁺ EM moments and transitions

Good account of ¹⁸⁻²⁴Ne Missing physics for ²⁶⁻³⁰Ne

- **Dynamical correlations**
- Static correlations? -

Collectivity trend correctly described Exaggerated → **Missing dynamical**? Wrong trend for ³⁰Ne... _

Can we explain it?

Mikael Frosini

2⁺ and 4⁺ excitation energies

2⁺ and 4⁺ EM moments and transitions

Good account of ¹⁸⁻²⁴Ne Missing physics for ²⁶⁻³⁰Ne

- Dynamical correlations
- Static correlations?

Collectivity trend correctly described Exaggerated → Missing dynamical? Wrong trend for ³⁰Ne... - Can we explain it?

Mikael Frosini

Special case of ³⁰Ne

- Island of inversion
- Difficult for all methods

2⁺ and 4⁺ excitation energies

Good account of ¹⁸⁻²⁴Ne Missing physics for ²⁶⁻³⁰Ne

- **Dynamical correlations**
- Static correlations? -

2⁺ and 4⁺ EM moments and transitions

Collectivity trend correctly described Exaggerated → **Missing dynamical**? Wrong trend for ³⁰Ne... _

Can we explain it?

Mikael Frosini

Special case of ³⁰Ne

- Island of inversion _
- Difficult for all methods -

2⁺ and 4⁺ excitation energies

Good account of ¹⁸⁻²⁴Ne Missing physics for ²⁶⁻³⁰Ne

- Dynamical correlations
- Static correlations?

2⁺ and 4⁺ EM moments and transitions

Collectivity trend correctly described Exaggerated → Missing dynamical? Wrong trend for ³⁰Ne...

Can we explain it?

Mikael Frosini

Special case of ³⁰Ne

- Island of inversion
- Difficult for all methods

IM-NCSM: misses rotational character PGCM second band more rotational

2⁺ and 4⁺ excitation energies

Good account of ¹⁸⁻²⁴Ne Missing physics for ²⁶⁻³⁰Ne

- Dynamical correlations
- Static correlations?

2⁺ and 4⁺ EM moments and transitions

Collectivity trend correctly described Exaggerated → Missing dynamical? Wrong trend for ³⁰Ne...

Can we explain it? Mikael Frosini Special case of ³⁰Ne

- Island of inversion
- Difficult for all methods

IM-NCSM: misses rotational character PGCM second band more rotational

2⁺ and 4⁺ excitation energies

2+

Good account of ¹⁸⁻²⁴Ne Missing physics for ²⁶⁻³⁰Ne

- Dynamical correlations
- Static correlations?

Collectivity trend correctly described Exaggerated → Missing dynamical? Wrong trend for ³⁰Ne...

Can we explain it? Mikael Frosini

4 [*uu*] 1*W*

0

Special case of ³⁰Ne

- Island of inversion
- Difficult for all methods

IM-NCSM: misses rotational character PGCM second band more rotational

Cea

4

 $\Delta E_1^{J^+}$ [MeV]

2⁺ and 4⁺ excitation energies

PGCM

0

2+

Good account of ¹⁸⁻²⁴Ne Missing physics for ²⁶⁻³⁰Ne

- **Dynamical correlations**
- Static correlations? -

Collectivity trend correctly described Exaggerated → **Missing dynamical**? Wrong trend for ³⁰Ne...

Can we explain it?

Mikael Frosini

Special case of ³⁰Ne

- Island of inversion
- Difficult for all methods -

IM-NCSM: misses rotational character PGCM second band more rotational

How to lower the intruder band?

Cea

4

 $\Delta E_1^{J^+}$ [MeV]

CQA

C22 MR-IMSRG evolution + PHFB-PT(2) rotational spectra

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), s \to \infty$

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), \ s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), \ s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

J. M. Yao⁰,^{1,*} B. Bally,^{2,†} J. Engel⁰,^{2,‡} R. Wirth⁰,^{1,§} T. R. Rodríguez⁰,^{3,||} and H. Hergert⁰,^{1,4,¶}

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

J. M. Yao^{1,*} B. Bally,^{2,†} J. Engel^{0,2,‡} R. Wirth^{0,1,§} T. R. Rodríguez^{0,3,]} and H. Hergert^{1,4,¶}

PGCM with 5 points 3 flow values s = 0, 10, 20

93

CEA

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ^{48}Ca

J. M. Yao 1,* B. Bally,^{2,†} J. Engel 0,2,‡ R. Wirth $^{0,1,\$}$ T. R. Rodríguez $^{0,3,\parallel}$ and H. Hergert $^{1,4,\parallel}$

PGCM with 5 points 3 flow values s = 0, 10, 20

PGCM-PT(2) always correcting

- 2 MeV at s=20
- Approximate decoupling of $|\Theta^{(0)}\rangle$

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ^{48}Ca

J. M. Yao ,1,* B. Bally,^{2,†} J. Engel ,2,‡ R. Wirth $^{,1,\$}$ T. R. Rodríguez $^{,3,\parallel}$ and H. Hergert $^{,1,4,\parallel}$

PGCM with 5 points 3 flow values s = 0, 10, 20

PGCM-PT(2) always correcting

- 2 MeV at s=20
- Approximate decoupling of $|\Theta^{(0)}\rangle$

Effect of flow evolution on PGCM spectra

- Systematic band dilatation
- Not corrected with triaxiality

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s)\,,\ s\to\infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

J. M. Yao ,1,* B. Bally,^{2,†} J. Engel ,2,‡ R. Wirth $^{,1,\$}$ T. R. Rodríguez $^{,3,\parallel}$ and H. Hergert $^{,1,4,\parallel}$

PGCM with 5 points 3 flow values s = 0, 10, 20

PGCM-PT(2) always correcting

- 2 MeV at s=20
- Approximate decoupling of $|\Theta^{(0)}\rangle$

Effect of flow evolution on PGCM spectra

- Systematic band dilatation
- Not corrected with triaxiality

Coherently corrected via PGCM-PT(2)

- **Reshuffling** of correlations
- Dynamical correlations needed

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), \ s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

J. M. Yao⁰,^{1,*} B. Bally,^{2,†} J. Engel⁰,^{2,‡} R. Wirth⁰,^{1,§} T. R. Rodríguez⁰,^{3,||} and H. Hergert⁰,^{1,4,¶}

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), \ s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

Reshuffling of correlations

September 21st, 2021

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s)\,, \ s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

Reshuffling of correlations

 $\begin{array}{l} \text{MR-IMSRG preprocessing} \\ \rightarrow \text{Lowers sHF starting point} \end{array}$

Mikael Frosini

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s)\,, \ s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ^{48}Ca

Reshuffling of correlations

 $\begin{array}{l} \text{MR-IMSRG preprocessing} \\ \rightarrow \text{Lowers sHF starting point} \end{array}$

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s)\,, \ s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

Reshuffling of correlations

 $\begin{array}{l} \text{MR-IMSRG preprocessing} \\ \rightarrow \text{Lowers sHF starting point} \end{array}$

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s)\,, \ s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

²⁰Ne sHF Δ 10.3 dHFB PGCM 5.5 PGCM-PT2 * Sinding energy [MeV] 120 10.3 12.1 -1506.3 6.7 Experiment 10 20 0 s [a.u.]

Reshuffling of correlations

 $\begin{array}{l} \text{MR-IMSRG preprocessing} \\ \rightarrow \text{Lowers sHF starting point} \end{array}$

\rightarrow **Enhances** static correlations

- Symmetry breaking
- Symmetry restoration

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ⁴⁸Ca

Reshuffling of correlations

Nucleus-dependent preprocessing of H

 $H(s) = U^{\dagger}(s)HU(s), s \to \infty$

Decouples $|\Theta^{(0)}\rangle$ from Q space -- Approaches ground state of $H(s \to \infty)$ **Recasting dynamical corr.** into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?

Reshuffling of correlations

\rightarrow Lowers sHF starting point \rightarrow **Enhances** static correlations

- Symmetry breaking

MR-IMSRG preprocessing

- Symmetry restoration

→ Tames down dynamical corr.

- But still needed (1.25 %)

MR-IMSRG

- \rightarrow More perturbative problem
- \rightarrow Grasps high-lying correlations

→ Smaller model space for PT? Necessary posterior correction

Optimal combination?

Cea

