DE LA RECHERCHE À L'INDUSTRIE

Ab initio description of doubly open-shell nuclei via multi-reference expansion methods

Colloque GANIL 2021

Context of this work

Context of this work

Ab initio microscopic description of nuclear structure

Context of this work

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom

Context of this work

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD

Context of this work

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

Context of this work

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of ab initio microscopic description
- Consistency (unified theoretical framework)
- Systematicity (complete phenomenology)
- Accuracy \& precision (with respect to experiment)

Context of this work

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of ab initio microscopic description
- Consistency (unified theoretical framework)
- Systematicity (complete phenomenology)
- Accuracy \& precision (with respect to experiment)

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of ab initio microscopic description
- Consistency (unified theoretical framework)
- Systematicity (complete phenomenology)
- Accuracy \& precision (with respect to experiment)

Light nuclei

Quasi-exact methods
1990's
NCSM, MC

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of ab initio microscopic description
- Consistency (unified theoretical framework)
- Systematicity (complete phenomenology)
- Accuracy \& precision (with respect to experiment)

Light nuclei

Quasi-exact methods

1990's
NCSM, MC

Exponential scaling

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of ab initio microscopic description
- Consistency (unified theoretical framework)
- Systematicity (complete phenomenology)
- Accuracy \& precision (with respect to experiment)

Light nuclei

Quasi-exact methods

Closed shells

Expansion methods Single-reference

Exponential scaling

2000's
MBPT, CC, SR-IMSRG, SCGF

Polynomial scaling

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of ab initio microscopic description
- Consistency (unified theoretical framework)
- Systematicity (complete phenomenology)
- Accuracy \& precision (with respect to experiment)

Light nuclei

Quasi-exact methods

Closed shells

Expansion methods
Single-reference
Singly open-shells
Symmetry-breaking Multi-reference

Exponential scaling

2000's
MBPT, CC, SR-IMSRG, SCGF

2010's
BMBPT, BCC, MR-IMSRG, GSCGF

> Polynomial scaling

Polynomial scaling

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of ab initio microscopic description
- Consistency (unified theoretical framework)
- Systematicity (complete phenomenology)
- Accuracy \& precision (with respect to experiment)

Light nuclei

Quasi-exact methods

Closed shells
Expansion methods
Single-reference
Singly open-shells
Symmetry-breaking Multi-reference

Doubly open-shells
Symmetry-breaking Multi-reference

1990's NCSM, MC	Exponentia scaling
2000's MBPT, CC, SR-IMSRG, SCGF	Polynomial scaling
2010's BMBPT, BCC, MR-IMSRG, GSCGF	Polynomial scaling
2020-? dBMBPT, dCC MR-IMSRG	Polynomial scaling

Ab initio microscopic description of nuclear structure

1) A structure-less nucleons as degrees of freedom
2) Interaction systematically expanded (EFT) consistently with QCD
3) Solve A-body Schrödinger equation to relevant accuracy

- Long term endeavor of ab initio microscopic description
- Consistency (unified theoretical framework)
- Systematicity (complete phenomenology)
- Accuracy \& precision (with respect to experiment)

Light nuclei

Quasi-exact methods

Closed shells

Expansion methods Single-reference

Singly open-shells

Symmetry-breaking Multi-reference
Doubly open-shells

Symmetry-breaking Multi-reference

Exponential scaling

2000's
MBPT, CC,
SR-IMSRG,
SCGF
2010's
BMBPT, BCC,
MR-IMSRG, GSCGF

2020-?
dBMBPT, dCC, MR-IMSRG

> Polynomial scaling

Polynomial scaling

Polynomial scaling

Expansion methods for open-shell nuclei

Expansion methods for open-shell nuclei

Expansion methods for open-shell nuclei

Resolution in closed shell systems

- Weakly correlated systems
- Symmetric mean-field methods

Expansion methods for open-shell nuclei

Resolution in closed shell systems

- Weakly correlated systems
- Symmetric mean-field methods

Expansion methods for open-shell nuclei

Resolution in closed shell systems

- Weakly correlated systems
- Symmetric mean-field methods

Expansion methods for open-shell nuclei

Resolution in closed shell systems

- Weakly correlated systems
- Symmetric mean-field methods

Resolution in closed shell systems

- Weakly correlated systems
- Symmetric mean-field methods

Challenges in open-shells

- Strongly correlated systems
- Deformation, mp-mh \rightarrow long range

Resolution in closed shell systems

- Weakly correlated systems
- Symmetric mean-field methods

Challenges in open-shells

- Strongly correlated systems
- Deformation, mp-mh \rightarrow long range

Resolution in closed shell systems

- Weakly correlated systems
- Symmetric mean-field methods

Challenges in open-shells

- Strongly correlated systems
- Deformation, mp-mh \rightarrow long range

Symmetric mean-field

Degeneracies, missing physics Deformed mean-field

- Symmetry breaking expansion Multi-determinantal

Resolution in closed shell systems

- Weakly correlated systems
- Symmetric mean-field methods

Challenges in open-shells

- Strongly correlated systems
- Deformation, mp-mh \rightarrow long range

Symmetric mean-field

Degeneracies, missing physics Deformed mean-field

- Symmetry breaking expansion Multi-determinantal
- Hybrid scaling PGCM

Ce2 Expansion methods for open-shell nuclei

Expansion methods for open-shell nuclei

Expansion methods for open-shell nuclei

Expansion methods for open-shell nuclei

CeZ Application to ${ }^{20} \mathrm{Ne}$

Application to ${ }^{20} \mathrm{Ne}$

First order - PGCM

(d) IM-NCSM

* R. Roth
4_{1}^{+}
$2_{1}^{+} \quad$

$0_{1}^{+} \quad$| 28(1) |
| :--- |

(e) Experiment

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

cea
 Application to ${ }^{20} \mathrm{Ne}$

First order - PGCM

(d) IM-NCSM
*R. Roth

(e) Experiment

1

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Cea Application to ${ }^{20} \mathrm{Ne}$

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]
(d) IM-NCSM

* R. Roth

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

cea
 Application to ${ }^{20} \mathrm{Ne}$

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]
(d) IM-NCSM

* R. Roth

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Exaggerated collectivity

$\rightarrow B(E 2)$ off beyond uncertainties
\rightarrow Missing dynamical correlations
(e) Experiment

Application to ${ }^{20} \mathrm{Ne}$

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

$\rightarrow B(E 2)$ off beyond uncertainties
\rightarrow Missing dynamical correlations
(d) IM-NCSM

* R. Roth
(e) Experiment

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology

\rightarrow Transition dens., pair transfers, etc.
\rightarrow Giant resonances (A. Porro poster)

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

$\rightarrow B(E 2)$ off beyond uncertainties
\rightarrow Missing dynamical correlations
(d) IM-NCSM
*R. Roth
(e) Experiment

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology

\rightarrow Transition dens., pair transfers, etc.
\rightarrow Giant resonances (A. Porro poster)

Second order - PGCM-PT(2)

[Hergert21]

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

$\rightarrow B(E 2)$ off beyond uncertainties
\rightarrow Missing dynamical correlations
(d) IM-NCSM

* R. Roth

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology

\rightarrow Transition dens., pair transfers, etc. \rightarrow Giant resonances (A. Porro poster)

Second order - PGCM-PT(2)

[Hergert21]

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

$\rightarrow B(E 2)$ off beyond uncertainties
\rightarrow Missing dynamical correlations
(d) IM-NCSM

* R. Roth
(e) Experiment

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology

\rightarrow Transition dens., pair transfers, etc.
\rightarrow Giant resonances (A. Porro poster)

Second order - PGCM-PT(2)

[Hergert21]

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

$\rightarrow B(E 2)$ off beyond uncertainties
\rightarrow Missing dynamical correlations
(d) IM-NCSM

* R. Roth
$2_{1}^{+}-\frac{1}{\frac{1}{28(1)}}$
$0_{1}^{+} \xrightarrow{\square}$

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology

\rightarrow Transition dens., pair transfers, etc.
\rightarrow Giant resonances (A. Porro poster)

Second order - PGCM-PT(2)

[Hergert21]

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

$\rightarrow B(E 2)$ off beyond uncertainties
\rightarrow Missing dynamical correlations
(d) IM-NCSM

* R. Roth

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology

\rightarrow Transition dens., pair transfers, etc.
\rightarrow Giant resonances (A. Porro poster)

Second order - PGCM-PT(2)

[Hergert21]

cea
 Application to ${ }^{20} \mathrm{Ne}$

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

$\rightarrow B(E 2)$ off beyond uncertainties
\rightarrow Missing dynamical correlations
(d) IM-NCSM

* R. Roth

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology
\rightarrow Transition dens., pair transfers, etc. \rightarrow Giant resonances (A. Porro poster)

Second order - PGCM-PT(2)

[Hergert21]

Investigation of correlations

- Dyn. corr. essential for description of BE
- Motivates theoretical modelling

First order - PGCM

Reference data
\rightarrow Experiment
\rightarrow Quasi-exact IM-NCSM [Roth21]

Exaggerated collectivity

$\rightarrow B$ (E2) off beyond uncertainties
\rightarrow Missing dynamical correlations
(d) IM-NCSM

* R. Roth

Good reproduction of first bands

- wrt. IM-NCSM and experiment
- within uncertainties?

Rich accessible phenomenology
\rightarrow Transition dens., pair transfers, etc.
\rightarrow Giant resonances (A. Porro poster)

Second order - PGCM-PT(2)

[Hergert21]

Collectivity

- Little correction expected
- Good account static + dynamical
- Small discrepancies
- Lack of collective coordinates?
\square PGCM-PT formalism
\square New multi-reference perturbation theory
\square Applicable to
\square Doubly open-shell nuclei
\square Ground and excited states
\square Correlations in nuclear structure calculations
\square Long range (static) vs. short range (dynamical) in first approximation
\square Convenient but arbitrary boundary
\square Optimal description of collective modes via PGCM...
\square... to be enriched in perturbation?
\square Systematic uncertainties quantifications in ab initio methods
\square Mid-term goal of ab initio methods
\square Steady progress in the last few years
\square To be enriched in a systematic way

Jean-Paul Ebran Yann Beaujeault-Taudiere

Heiko Hergert

KULEUVEN
 Pepijn Demol

Thomas Duguet
Vittorio Somà
Andrea Porro

Robert Roth
Alexander Tichai

Benjamin Bally

Backup slides

Outline of possible developments of PGCM-PT(2)

Validation of PGCM-PT(2) for open-shells

Extension to other symmetries

Optimization for realistic MS

Application to shell-model Hamiltonians

Non perturbative extensions of PGCM-PT(2)

Description of shape coexistence in Selenium
\square [Burton20] J. Chem. Theory Comput. 2020, 16, 9, 5586-5600 (2020)
\square [Tsuchimochi19] J. Chem. Theory Comput. 2019, 15, 12, 6688-6702 (2019)
\square [Hüther20] Physics Letters B Volume 808, 135651 (2020)
\square [Roth21] IM-NSCM \& FCI calculation, private communication
\square [Choi11] SIAM Journal on Scientific Computing, Volume 33, Issue 4, 1810-1836, (2011)
\square [Hergert21] MR-IMSRG evolved Hamiltonian files, private communication

Ce2 Derivation and benchmarking

Derivation and benchmarking

Hioher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

Derivation and benchmarking

Hisher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

Derivation and benchmarking

Hisher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

Derivation and benchmarking

Hisher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation
$O \equiv \frac{1}{(1!)^{2}} o_{b_{1}}^{a_{1}} C_{b_{1}}^{a_{1}}+\frac{1}{(2!)^{2}} o_{b_{1} b_{2}}^{a_{1} a_{2}} C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!)^{2}} a_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} C_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}$ \qquad $O=\frac{1}{(1!)^{2}} 0_{b_{1}}^{a_{1}}: C_{b_{1}}^{a_{1}}:+\frac{1}{(2!)^{2}} o_{b_{1} b_{2}}^{a_{1} a_{2}}: C_{b_{1} b_{2}}^{a_{1} a_{2}}:+\frac{1}{(3!)^{2}}{ }^{2} a_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}: C_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}$
Normal ordering wrt. $|\Phi\rangle S D$

$$
o_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}\left[\rho^{\Phi}\right]=\sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\Phi \otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}} .
$$

Derivation and benchmarking

Hisher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation
Expansive storage + runtime

$$
\begin{aligned}
& O \equiv \frac{1}{(1!)^{2}} o_{b_{1}}^{a_{1}} C_{b_{1}}^{a_{1}}+\frac{1}{(2!)^{2}} o_{b_{1} b_{2}}^{a_{1} a_{2}} C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!)^{2}} a_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} a_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} \longrightarrow O=\frac{1}{(1!)^{2}} o_{b_{1}}^{a_{1}}: C_{b_{1}}^{a_{1}}:+\frac{1}{(2!)^{2}} o_{b_{1} b_{2}}^{a_{1} a_{2}}: C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!)^{1}} o_{b_{1} b_{2} b_{2} a_{3}}^{a_{1} a_{2}}: C_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} \\
& \text { Normal ordering wrt. } \mid \Phi \backslash S D \\
& o_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}\left[\rho^{\Phi}\right]=\sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\Phi \otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}} \\
& \text { Tensor product } \longleftarrow
\end{aligned}
$$

Derivation and benchmarking

Hisher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions BMF : NO2B approximation

NO2B \Leftrightarrow
Keep only k<3

Expansive storage + runtime

$$
O=\frac{1}{(1!)^{2}} o_{b_{1}}^{a_{1}}: C_{b_{1}}^{a_{1}}:+\frac{1}{(2!)^{2}} o_{b_{1} b_{2}}^{a_{1} a_{2}}: C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!)^{2}} o_{b_{1} b_{1} a_{2} a_{3}}^{a_{2}}:
$$

Normal ordering wrt. |Ф \mid SD

$$
\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}\left[\rho^{\Phi}\right]=\sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\Phi^{\otimes(n-k)}}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}
$$

$$
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi}
$$

$$
\text { Tensor product } \longleftarrow
$$

$$
+t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi}
$$

$$
+v \cdot+w \cdot \rho^{\Phi}
$$

$+0$

Derivation and benchmarking

Hisher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions BMF : NO2B approximation

NO2B \Leftrightarrow
Keep only k<3

Expansive storage + runtime

$$
\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}\left[\rho^{\Phi}\right]=\sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\Phi \otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}
$$

$$
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \longleftarrow
$$

$$
+t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi}
$$

$+v \cdot+w \cdot \rho^{\phi}$

Derivation and benchmarking

Hisher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

NO2B \Leftrightarrow Keep only k<3

$$
+\frac{1}{(3!)^{2}} o_{b_{1} b_{2} b_{3} a_{3} a_{3}}^{C_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}} \longrightarrow 0=\frac{1}{(1!)^{2}} o_{b_{1}}^{a_{1}}: C_{b_{1}}^{a_{1}}:+\frac{1}{(2!)^{2}}{ }^{a_{b_{1} b_{2}} a_{2}}: C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!)^{2}} o_{b_{1} b_{1} a_{2} b_{3}}^{a_{3}}: C_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}:
$$

Normal ordering wrt. $\mid \Phi \backslash S D$

$$
\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}\left[\rho^{\Phi}\right]=\sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\phi \otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}
$$

$$
+t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi}
$$

I imits of NO2R

$$
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \longleftarrow
$$

$+v \cdot+w \cdot \rho^{\phi}$

In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

Derivation and benchmarking

NO2B \Leftrightarrow
 Keep only k<3

$$
O \equiv \frac{1}{(1!)^{2}} o_{b_{1}}^{a_{1}} C_{b_{1}}^{a_{1}}+\frac{1}{(2!)^{2}} o_{b_{1} b_{2}}^{a_{1} a_{2}} C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!)^{2}} a_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} C_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} \longrightarrow O=\frac{1}{(1!)^{2}} o_{b_{1}}^{a_{1}}: C_{b_{1}}^{a_{1}}:+\frac{1}{(2!)^{2}} o_{b_{1} b_{2} a_{2}}^{a_{1} a_{2}}: C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!!)^{2}} o_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}: C_{b_{1} b_{2} b_{3} a_{3} a_{3}}
$$

Normal ordering wrt. $\mid \Phi \backslash S D$

$$
\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}\left[\rho^{\Phi}\right]=\sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\Phi \otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}
$$

$$
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \longleftarrow
$$

$$
+t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi}
$$

$$
+v \cdot+w \cdot \rho^{\Phi}
$$

Hinher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

I imits of NO2R
In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

Derivation and benchmarking

Hinher rank nuclear forces

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

I imits of NO2R

In open-shells

- Expansive calculations
- SB Hamiltonians

Playing with contractions

$$
O \equiv \frac{1}{(1!)^{2}} \partial_{b_{1}}^{a_{1}} C_{b_{1}}^{a_{1}}+\frac{1}{(2!)^{2}} a_{b_{1} b_{2}}^{a_{1} a_{2}} C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!)^{2}} o_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} C_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} \longrightarrow O=\frac{1}{(1!)^{2}} a_{b_{1}}^{a_{1}}: C_{b_{1}}^{a_{1}}:+\frac{1}{(2!)^{2}} o_{b_{1} b_{2}}^{a_{1} a_{2}}: C_{b_{1} b_{2}}^{a_{1} a_{2}}+\frac{1}{(3!)^{2}}{ }^{a_{b_{1} b_{2} b_{2} a_{3}} a_{3}}: C_{b_{1} a_{2} b_{2} b_{3}}^{a_{1} a_{3}}:
$$

Normal ordering wrt. $|\Phi\rangle S D$

$$
\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}\left[\rho^{\Phi}\right]=\sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\Phi \otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}
$$

$$
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \longleftarrow
$$

NO2B \Leftrightarrow Keep only $\mathrm{k}<3$
$+t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi}$
$+v \cdot+w \cdot \rho^{\phi}$
Three-body discarded beyond mean-field

- Intricate workarounds

Hinher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions
BMF : NO2B approximation

I imits of NO2R

NO2B \Leftrightarrow
 Keep only $\mathrm{k}<3$

$$
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \longleftarrow
$$

$$
+t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi}
$$

$$
+v \cdot+w \cdot \rho^{\Phi}
$$

Three-body discarded beyond mean-field

In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

Playing with contractions

Arbitrary 1-body density matrix ρ
-

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

Hinher rank nıiclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

$$
+t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi}
$$

I imits of NO2R

$$
+v \cdot+w \cdot \rho^{\Phi}
$$

In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

Playing with contractions

Arbitrary 1-body density matrix ρ

$$
\begin{gathered}
\text { NO2B } \Leftrightarrow \\
\text { Keep only } k<3
\end{gathered}
$$

$$
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \longleftarrow
$$

Three-body discarded beyond mean-field

$$
\binom{0_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}},{ }_{2},}{o_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}=\sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!}\left[0^{(l)}[\rho] \cdot \rho^{\otimes(l-n)}\right]_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}} .}
$$

Back and forth transformation ρ No Wick's theorem involved

Hinher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

I imits of NO2R

In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

In medium interactions
Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

Back and forth transformation ρ No Wick's theorem involved

$$
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \longleftarrow
$$

$$
\begin{gathered}
\text { NO2B } \Leftrightarrow \\
\text { Keep only } k<3
\end{gathered}
$$

$$
+t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi}
$$

$$
+v \cdot+w \cdot \rho^{\Phi}
$$

Playing with contractions
Arbitrary 1-body density matrix ρ

$$
\binom{\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}},}{o_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}=\sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!}\left[0^{(l)}[\rho] \cdot \rho^{\otimes(l-n)}\right]_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}}
$$

Approximation

$$
\overline{\mathbf{o}}^{(l)}[\rho] \equiv \mathbf{o}^{(l)}[\rho] \text { for } l \leq k,
$$

$$
\overline{\mathrm{o}}^{(l)}[\rho] \equiv 0 \text { for } l>k
$$

Three-body discarded beyond mean-field

Hinher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

I imits of NO2R

In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

In medium interactions
Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

Playing with contractions
Arbitrary 1-body density matrix ρ

$$
\binom{\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}},}{o_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}=\sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!}\left[0^{(l)}[\rho] \cdot \rho^{\otimes(l-n)}\right]_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}}
$$

Approximation

Back and forth transformation No Wick's theorem involved

NO2B \Leftrightarrow

$$
\text { Keep only } k<3
$$

$$
\begin{aligned}
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] & \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \\
& +t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \\
& +v \cdot+w \cdot \rho^{\Phi}
\end{aligned}
$$

Three-body discarded beyond mean-field

ρ

Hinher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions
BMF : NO2B approximation

I imits of NO2R

In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

Playing with contractions
Arbitrary 1-body density matrix ρ

$$
\binom{0_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}},}{o_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}=\sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!}\left[o^{(l)}[\rho] \cdot \rho^{\otimes(l-n)}\right]_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}} .}
$$

Approximation

$\begin{aligned} \bar{o}^{(l)}[\rho] & \equiv \mathbf{o}^{(l)}[\rho] \text { for } l \leq k, \\ \bar{o}^{(l)}[\rho] & \equiv 0 \text { for } l>k .\end{aligned} \quad \rightarrow$ transformed back to sp basis

Specific case of the interaction

Back and forth transformation No Wick's theorem involved

Hinher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

I imits of NO2R

In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

NO2B \Leftrightarrow

$$
\text { Keep only } k<3
$$

$$
\begin{aligned}
H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] & \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \\
& +t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \\
& +v \cdot+w \cdot \rho^{\Phi}
\end{aligned}
$$

$$
+0
$$

Three-body discarded beyond mean-field

Playing with contractions
Arbitrary 1-body density matrix ρ

$$
\binom{\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}, \bar{\eta}}{o_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}=\sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!}\left[o^{(l)}[\rho] \cdot \rho^{\otimes(l-n)}\right]_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}}
$$

Approximation

$$
\begin{aligned}
& \overline{\mathbf{o}}^{(l)}[\rho] \equiv \mathbf{o}^{(l)}[\rho] \text { for } l \leq k, \quad \rightarrow \text { transformed back to sp basis } \\
& \overline{\mathbf{o}}^{(l)}[\rho] \equiv 0 \text { for } l>k .
\end{aligned}
$$

Specific case of the interaction

Back and forth transformation No Wick's theorem involved

$$
\begin{align*}
& \bar{h}^{(0)}[\rho] \equiv \frac{1}{3!} w^{(3)} \cdot \rho^{\otimes(3)}, \\
& \bar{h}^{(1)}[\rho] \equiv t^{(1)}-\frac{1}{2!} w^{(3)} \cdot \rho^{\otimes(2)}, \\
& \bar{h}^{(2)}[\rho] \equiv v^{(2)}+w^{(3)} \cdot \rho,
\end{align*}
$$

Hinher rank nuclear forces

1 N and 2 N always treated explicitly $3 N(4 N)$ manageable at $H F(B)$ level

- Low complexity
- Symmetry reductions

BMF : NO2B approximation

I imits of NO2R

In open-shells

- Expansive calculations
- SB Hamiltonians
- Intricate workarounds

In medium interactions

Involve only 1-body density matrices Symmetric truncated operator SP basis \rightarrow start other calculations

$$
\begin{aligned}
& H^{\mathrm{NO} 2 \mathrm{~B}}\left[\rho^{\Phi}\right] \equiv t \cdot \rho^{\Phi}+\frac{1}{2!} v \cdot \rho^{\Phi} \cdot \rho^{\Phi}+\frac{1}{3!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \cdot \rho^{\Phi} \quad \text { Tensor product } \longleftarrow \\
& \text { NO2B } \Leftrightarrow \\
& \text { Keep only k<3 } \\
& +t+v \cdot \rho^{\Phi}+\frac{1}{2!} w \cdot \rho^{\Phi} \cdot \rho^{\Phi} \\
& +v \cdot+w \cdot \rho^{\Phi}
\end{aligned}
$$

- Inticate workaround

Playing with contractions
Arbitrary 1-body density matrix ρ

$$
\binom{\mathbf{o}_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}[\rho] \equiv \sum_{n=k}^{N} \frac{1}{(n-k)!}\left[o^{(n)} \cdot \rho^{\otimes(n-k)}\right]_{b_{1} \cdots b_{k}}^{a_{1} \cdots a_{k}}, \bar{\eta}}{o_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}=\sum_{l=n}^{N} \frac{(-1)^{l-n}}{(l-n)!}\left[o^{(l)}[\rho] \cdot \rho^{\otimes(l-n)}\right]_{b_{1} \cdots b_{n}}^{a_{1} \cdots a_{n}}}
$$

Approximation

$$
\begin{aligned}
& \overline{\mathbf{o}}^{(l)}[\rho] \equiv \mathbf{o}^{(l)}[\rho] \text { for } l \leq k, \quad \rightarrow \text { transformed back to sp basis } \\
& \overline{\mathbf{o}}^{(l)}[\rho] \equiv 0 \text { for } l>k .
\end{aligned}
$$

Specific case of the interaction

Back and forth transformation No Wick's theorem involved

$$
\begin{aligned}
& \bar{h}^{(0)}[\rho] \equiv \frac{1}{3!} w^{(3)} \cdot \rho^{\otimes(3)}, \\
& \bar{h}^{(1)}[\rho] \equiv t^{(1)}-\frac{1}{2!} w^{(3)} \cdot \rho^{\otimes(2)}, \\
& \bar{h}^{(2)}[\rho] \equiv v^{(2)}+w^{(3)} \cdot \rho,
\end{aligned}
$$

Simple and cheap Same symmetries as ρ
Reduces to NO2B in closed shells Generalizable to $n>3$

Systematics in the Neon chain

Systematics in the Neon chain

2^{+}and 4^{+}excitation energies

Good account of ${ }^{18-24} \mathrm{Ne}$
Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?

Systematics in the Neon chain

$\mathbf{2}^{+}$and $\mathbf{4}^{+}$excitation energies

Good account of ${ }^{18-24} \mathrm{Ne}$ Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?

2^{+}and 4^{+}EM moments and transitions

Collectivity trend correctly
described
Exaggerated \rightarrow Missing dynamical? Wrong trend for ${ }^{30} \mathrm{Ne}$..

- Can we explain it?

Systematics in the Neon chain

$\mathbf{2}^{+}$and $\mathbf{4}^{+}$excitation energies

Good account of ${ }^{18-24} \mathrm{Ne}$ Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?

2^{+}and 4^{+}EM moments and transitions

Collectivity trend correctly
described
Exaggerated \rightarrow Missing dynamical? Wrong trend for ${ }^{30} \mathrm{Ne}$..

- Can we explain it?

Special case of ${ }^{30} \mathrm{Ne}$

- Island of inversion
- Difficult for all methods

Systematics in the Neon chain

$\mathbf{2}^{+}$and $\mathbf{4}^{+}$excitation energies

Good account of ${ }^{18-24} \mathrm{Ne}$ Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?

2^{+}and 4^{+}EM moments and transitions

Collectivity trend correctly
described
Exaggerated \rightarrow Missing dynamical? Wrong trend for ${ }^{30} \mathrm{Ne}$.

- Can we explain it?

Special case of ${ }^{30} \mathrm{Ne}$

- Island of inversion
- Difficult for all methods

Systematics in the Neon chain

$\mathbf{2}^{+}$and $\mathbf{4}^{+}$excitation energies

Good account of ${ }^{18-24} \mathrm{Ne}$ Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?
2^{+}and 4^{+}EM moments and transitions

Collectivity trend correctly
described
Exaggerated \rightarrow Missing dynamical? Wrong trend for ${ }^{30} \mathrm{Ne}$.

IM-NCSM: misses rotational character PGCM second band more rotational

Systematics in the Neon chain

$\mathbf{2}^{+}$and $\mathbf{4}^{+}$excitation energies

Good account of ${ }^{18-24} \mathrm{Ne}$ Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?
2^{+}and 4^{+}EM moments and transitions

Collectivity trend correctly
described
Exaggerated \rightarrow Missing dynamical?
Wrong trend for ${ }^{30} \mathrm{Ne}$..

Special case of ${ }^{30} \mathrm{Ne}$

- Island of inversion
- Difficult for all methods

IM-NCSM: misses rotational character PGCM second band more rotational

Systematics in the Neon chain

2^{+}and 4^{+}excitation energies $\quad 2^{+}$and $\mathbf{4}^{+}$EM moments and transitions

\star PGCM ${ }^{30} \mathrm{Ne}$ Intruder band

Good account of ${ }^{18-24} \mathrm{Ne}$ Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?

Collectivity trend correctly
described
Exaggerated \rightarrow Missing dynamical? Wrong trend for ${ }^{30} \mathrm{Ne}$.

IM-NCSM: misses rotational character PGCM second band more rotational

Systematics in the Neon chain

2^{+}and 4^{+}excitation energies $\quad 2^{+}$and $\mathbf{4}^{+}$EM moments and transitions

\star PGCM ${ }^{30} \mathrm{Ne}$ Intruder band

Good account of ${ }^{18-24} \mathrm{Ne}$ Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?

Collectivity trend correctly
described
Exaggerated \rightarrow Missing dynamical? Wrong trend for ${ }^{30} \mathrm{Ne}$.

Special case of ${ }^{30} \mathrm{Ne}$

- Island of inversion
- Difficult for all methods

IM-NCSM: misses rotational character PGCM second band more rotational

How to lower the intruder band?
$\mathbf{2}^{+}$and $\mathbf{4}^{+}$excitation energies
$\mathbf{2}^{+}$and $\mathbf{4}^{+}$EM moments and transitions
\star PGCM ${ }^{30} \mathrm{Ne}$ Intruder band

Good account of ${ }^{18-24} \mathrm{Ne}$ Missing physics for ${ }^{26-30} \mathrm{Ne}$

- Dynamical correlations
- Static correlations?

PGCM

- Good overall agreement with experiment
- Spectra, moments and transitions
- Working best for standard rotational nuclei
- Room for improvement
- Island of inversion
- Missing fd-fp cross-shell correlations in ${ }^{30} \mathrm{Ne}$
- Possible improvements
- Enlarge set of collective coordinates
- Add elementary excitations
- Perturbatively (PGCM-PT next)
- Into PGCM ansatz
described
Exaggerated \rightarrow Missing dynamical?

How to lower the intruder band?
0_{+}^{5} 工

$2_{1}^{+} \stackrel{\square}{2(1)}$
$0_{1}^{+} \xrightarrow{2(1)}$

2_{1}^{+}
$0_{1}^{+} \underline{\text { হ2(64) }}$

ptational character more rotational

Special case of ${ }^{30} \mathrm{Ne}$

- Island of inversion
- Difficult for all methods

Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

MR-IMSRG IHeraert161

Nucleus-dependent preprocessing of H
$H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty$

Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

MR-IMSRG [Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space
-- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

MR-IMSRG IHeraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space
-- Approaches ground state of $H(s \rightarrow \infty)$
Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations
and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{C}$ a

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

MR-IMSRG IHeraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space -- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

PGCM with 5 points
3 flow values $s=0,10,20$

MR-IMSRG [Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space -- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

PGCM with 5 points
3 flow values $s=0,10,20$

PGCM-PT(2) always correcting

- $\quad 2 \mathrm{MeV}$ at $\mathrm{s}=20$
- Approximate decoupling of $\left|\Theta^{(0)}\right\rangle$

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space -- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

PGCM with 5 points
3 flow values $s=0,10,20$

PGCM-PT(2) always correcting

- $\quad 2 \mathrm{MeV}$ at $\mathrm{s}=20$
- Approximate decoupling of $\left|\Theta^{(0)}\right\rangle$

Effect of flow evolution on PGCM spectra

- Systematic band dilatation
- Not corrected with triaxiality

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space -- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

PGCM with 5 points
3 flow values $s=0,10,20$

PGCM-PT(2) always correcting

- $\quad 2 \mathrm{MeV}$ at $\mathrm{s}=20$
- Approximate decoupling of $\left|\Theta^{(0)}\right\rangle$

Effect of flow evolution on PGCM spectra

- Systematic band dilatation
- Not corrected with triaxiality

Coherently corrected via PGCM-PT(2)

- Reshuffling of correlations
- Dynamical correlations needed

Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

MR-IMSRG IHeraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space
-- Approaches ground state of $H(s \rightarrow \infty)$
Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations
and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{C}$ a

| | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Combining PGCM-PT(2) with MR-IMSRG preprocessed Hamiltonians

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space
-- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into H(s)

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

Reshuffling of correlations

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space
-- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

Reshuffling of correlations

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space
-- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

Reshuffling of correlations

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space
-- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

Reshuffling of correlations

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space -- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

Reshuffling of correlations

MR-IMSRG preprocessing \rightarrow Lowers sHF starting point
\rightarrow Enhances static correlations

- Symmetry breaking
- Symmetry restoration

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space -- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

Reshuffling of correlations

MR-IMSRG preprocessing \rightarrow Lowers sHF starting point
\rightarrow Enhances static correlations

- Symmetry breaking
- Symmetry restoration
\rightarrow Tames down dynamical corr.
- But still needed (1.25 \%)

MR-IMSRG 「Heraert161

Nucleus-dependent preprocessing of H

$$
H(s)=U^{\dagger}(s) H U(s), s \rightarrow \infty
$$

Decouples $\left|\Theta^{(0)}\right\rangle$ from \mathcal{Q} space -- Approaches ground state of $H(s \rightarrow \infty)$ Recasting dynamical corr. into $\mathrm{H}(\mathrm{s})$

PGCM + MR-IMSRG [Yao20]

- Already existing
- Encouraging results
- Improved by PGCM-PT?
ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

Reshuffling of correlations

MR-IMSRG preprocessing \rightarrow Lowers sHF starting point
\rightarrow Enhances static correlations

- Symmetry breaking
- Symmetry restoration
\rightarrow Tames down dynamical corr.
- But still needed (1.25 \%)

MR-IMSRG

\rightarrow More perturbative problem
\rightarrow Grasps high-lying correlations
\rightarrow Smaller model space for PT?
Necessary posterior correction

- Optimal combination?

MR-IMSRG 「Heraert161
Nucleus-dependent preprocessing of H

Reshuffling of correlations

Decouples $\mid \Theta^{(0}$
-- Approaches g Recasting dyna

PGCM + MR-IM

- Already ex
- Encouragi - Improved
- Reshuffling of correlations
- Dynamical correlations still needed beyond PGCM
- Binding energy
- Spectra
- Three levers for an accurate / versatile / optimal nuclear structure description
a. Preprocessing of Hamiltonian via e.g. MR-IMSRG
b. PGCM to capture static correlations at low computational cost
c. PGCM-PT(2) to bring remaining dynamical correlations

Ab Initio Treatme and the Neutrinoles

