

Beta decay History ALTO TETRA Rb Ag Cd Ga To take home To take home

Beta decay of neutron rich nuclei

- Shorter-lived nuclei
- ${\hfill \circ}\ \beta\mbox{-delayed}$ neutron-emission is becoming the dominant process
- β-delayed multi neutron-emission

Reactor control and decay heat calculations

r — process calculations

Nuclear Structure

Beta decay

History

Ga

History

Nuclear Physics A 701 (2002) 87c-95c RIB production with photofission of uranium

Yu.Ts. Oganessian*, S.N. Dmitriev, J. Kliman, O.A. Maslov, G.Ya. Starodub, A.G. Belov, S.P. Tretiakova

Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia

Nuclear Physics A 701 (2002) 87c-95c RIB production with photofission of uranium

Yu.Ts. Oganessian*, S.N. Dmitriev, J. Kliman, O.A. Maslov, G.Ya. Starodub, A.G. Belov, S.P. Tretiakova

Beta decay History History

ALTO.

To take home

To take home

Nuclear Physics A 701 (2002) 87c-95c RIB production with photofission of uranium

Yu.Ts. Oganessian*, S.N. Dmitriev, J. Kliman, O.A. Maslov, G.Ya. Starodub, A.G. Belov, S.P. Tretiakova

A NEUTRON MULTIPLICITY DETECTOR FOR RARE SPONTANEOUS FISSION EVENTS

G.M. TER-AKOPIAN, A.G. POPEKO, E.A. SOKOL, L.P. CHELNOKOV, V.I. SMIRNOV and V.A. GORSHKOV Laboratory of Nuclear reactions, Joint Institute for Nuclear Research, Dubna, U.S.S.R.

Accepted proposals at ALTO:

Study of beta-decay properties of neutron-rich Ag isotopes at the r-process path (D. Testov)

Meson-exchange enhancement of first-forbidden beta transitions in neutron-rich Sn nuclei near

closed shell (F. Didierjean)

- D. Testov, A. Severyukhin et al., Eur. Phys. J. A 57:59 (2021)
- D. Verney, D. Testov et al., Phys. Rev. C 95 054320 (2017)
- A. Severyukhin, N. Arsenyev, I. Borzov, E. Sushenok, Phys. Rev C 95, 034314 (2017)
- D. Testov, D. Verney, Yu. Penionzhkevich et al., JINST 14 P08002 (2019)
- D. Testov, D. Verney, B. Roussiere et al., Nucl. Inst.&Meth. A 815 96 (2016)
- D. Testov, E. Kuznetsova, J.N. Wilson JINST 10 P09011 (2015)

JINR DUBNA

 $\epsilon_{\beta} \sim 60\%$

Beta decay History ALTO TETRA Rb Ag Cd Ga To take home TETRA and BEDO in sequential mode

To take home

D 14		ALIO		RD	Ag	Ca	Ga	TO Lake nome
Result	s: ³⁰ R) and	" KD					

To take home

D. Testov et al 2019 JINST 14 P08002

210 208

D. Testov et al., Eur. Phys. J. A (2021) 57 59

Experiments on the mass-separated beams

Beta decay History ALTO TETRA Rb Ag Cd Multi neutron emission of Cd isotopes

A. Severyukhin, N. Arsenyev, I. Borzov,E. Sushenok, Phys. Rev C 95, 034314 (2017)

To take home

To take home

An influence of the phonon-phonon coupling (PPC) on the β -decay half-lives and multi-neutron emission probabilities is analyzed within the microscopic model based on the Skyrme interaction with tensor components included. The finite-rank separable approximation is used in order to handle large two-quasiparticle spaces. The even-even nuclei near the r-process paths at N = 82 are studied.

Maximal P_{1n} and P_{2n} values are obtained in the case of ¹³²Cd. For ¹²⁶Cd, a nonzero probability of the neutron emission is found.

/s

$$T_{1/2}(^{83}Ga)=0.312(1)ms, P_{1n}(^{83}Ga)=84(2)\%, \Phi=\sim400$$

time [s]

Neutron activity

10000

5000

Beta decay History ALTO TETRA Rb Ag Cd What is the situation near Nm=50?

Ga

Beta decay History ALTO TETRA Rb Ag Cd What is the situation near Nm=50 ?

	N_=2	8			
		$N_m + 1$	$N_m + 2$	$N_m + 3$	
emitter	48Ca	49Ca	50Ca	51Ca	
S _n =	9952	5146	6360	4821	
precursor		48K	49K	50K	51K
precursor Q _β =		48K 11940	49K	50K	51K 13820#
$Q_{\beta} = Q_{\beta n} =$		48K 11940 1988	49K 11688 6542	50K 13861 7501	51K 13820# 9002

To take home

To take home

Ga

To take home

 β -delayed neutron-emission crossing the N = 50, N = 82

- 1 Measurements of $P_{1n,2n,...}$, $T_{1/2}$
- 2 Absolute branching ratio in β -decay of neutron rich nuclei
- 3 neutron-tagged γ -ray (decay) spectroscopy

Performed studies (at ALTO):

- ^{92–103}Rb (surface)
- 2 ⁸⁰⁻⁸⁴Ga (laser)
- ^{3 123-125}Ag (A-separated beams)

Irène

DUBNA

The experimental data allows to tune theories:

- ➔ Forbidden decays crossing N=50, 82
- Validate β-decay / β-delayed (multi-)neutron emission calculations for the odd-A nuclei within the DF3a+CQRPA framework with the fixed parent ground-state spin-parities;
- \bigcirc β -transition calculations between the np-nh states within the extended FRSA framework.
- to extend possibilities of spin-parity determination;
- to validate the beyond mean-field predictions of np-nh structure induced suppression of the feeding to particular states in the product nuclei

XXIInd COLLOQUE GANIL

Beta decay History ALTO TETRA Rb Ag Cd Ga To take home To take home BEDO&TETRA is a part of DESIR (SPIRAL-2) project

TETRA in Normadie

FTRA

Experiment E819S-20 (SPIRAL-1): Is there a dark decay of neutrons in ⁶He ? (Spoke person: Herve Savajols)

Thank you for you attention!

26 SEP > 1 OCT 2021 Autrans-Méaudre en Vercors, FRANCE

