

Understanding ²²Na cosmic abundance by measuring lifetimes in ²³Mg

C. Fougères¹, F. de Oliveira Santos¹ et al. ¹GANIL CEA/DRF-CNRS/IN2P3, Caen (France)

Astrophysics motivations

Stellar objects of interest

Binary system {Red Giant RG + White dwarf WD} Matter accretion \rightarrow explosive hydrogen burning at surface

Impacts

- Abundances of nuclei
- Isotopic composition of meteoritic presolar grains Black (1972)
- Test of Nova models
- Number of supernovae SNIa (dark energy)

Need of astronomical observables

Uncertainties

Accretion dynamics, initial WD temp.

Sensitivity on ²²Na from nova

²²Na(p, γ)²³Mg* rate

Sensitivity improved by x30 De Angelis, Tatischeff et al. (2017)

3

Destruction ²²Na(p, γ)²³Mg

²²Na(p, γ)²³Mg rate = Σ (\propto resonant $\omega\gamma$)

Direct $\omega \gamma$ measurements, TRIUMF ²²Na(p, γ)²³Mg Sallaska et al. (2011)

Gamow

Experimental approach

Indirect E710@GANIL

Population of ²³Mg* states

 \rightarrow 22 states in ²³Mg* identified and isolated at Ex +/- 0.3 MeV

Accessing γ -ray transition with AGATA

Preliminary results

Spectroscopy of the Ex=7.786 MeV excited state in ²³Mg*

Accessing lifetimes (1)

Based on lineshape analysis where experiment compared with simulations (EVASIONS code built for E710)

Method N°1: DSAM classical

 E_v projected on angle slices

Accessing lifetimes (2)

Method N°2: β distribution *new*

Distribution of β reconstructed from (E_y, θ_{DS})

Method N°3: DCM recent

Doppler Corrected Method (E_v^{DC} projected on all angles)

Results in lifetimes of ²³Mg*

CANI-

Preliminary tests

Accessing BR_p

Ex^{VAMOS} = 7.78 +/-0.4 MeV

Astrophysical impacts

Predictions in ²²Na flux

New rate ²²Na(p, γ)²³Mg

 $^{22}Na(p, \gamma)^{23}Mg^*$ rate

Analytic calculations, with $\omega \gamma_{0.213MeV} = 0.21(7) \text{ meV}$ PRELIMINARY

 $(J=7/2+, T = 11.7 \text{ fs}), BR_p = 0.65\%$ Friedman et al (2020)

Results to be submitted

Predictions in ²²Na flux

Final results in (BR_p, J)

Calculations of Monte Carlo reaction rate Meyer Ph.D. thesis (2020)

Nova simulations with SHIVA J. José et al, (1998, 2021) + other free parameters (composition of thermonuclear medium)

Outlooks

THANKS to E710 collaboration and to you for the attention

References

V. Tatischeff et al A. De Angelis. The e-astrogam mission. exploring the extreme universe with gamma rays in the mev-gev range. *Experimental Astronomy*, 44, 2017.

D.C. Black. On the origins of trapped helium, neon and argon isotopic variations in meteorites - i. gas-rich meteorites, lunar soil and breccia. *Geochimica and Cosmochimica Acta*, 36, 1972.

R. Diehl. Cosmic gamma-ray spectroscopy. Astronomical Review, 8, 2013.

A. Saastamoinen et al. Experimental study of β -delayed proton decay of ²³Al for nucleosynthesis in novae. *Physical Review C*, 83, 2011.

A.L Sallaska et al. Direct Measurements of $^{22}\rm Na(p,\gamma)^{23}Mg$ Resonances and Consequences for $^{22}\rm Na$ Production in Classical Novae. *Physical Review Letters*, 105, 2010.

B. Cederwall et al. Measurement of ultra-fast γ -ray transitions from heavy-ion compound nucleus reactions. Nucl. Instrum. Methods. Phys. Res. A, 353, 1995.

B. Paxton et al. Modules for Experiments in Stellar Astrophysics (MESA). The Astrophysical Journal Supplement Series, 4, 2013.

D. Watson et al. Identification of strontium in the merger of two neutron stars. *Nature*, 574, 2019.

D.G Jenkins et al. Reevaluation of the 22 Na(p, γ)Reaction Rate : Implications for the detection of 22 Na Gamma Rays from Novae. *Physical Review Letters*, 92, 2004.

F. Stegmuller et al. $^{22}\mathrm{Na}(\mathrm{p},\gamma)^{23}\mathrm{Mg}$ resonant reaction at low energies. Nuclear Physics A, 601, 1996.

K. Perajarvi et al. Measurement of the IAS resonance strength in $^{23}\mathrm{Mg.}$ Physical Review B, 492, 2000.

M. Friedman et al. Low-energy $^{23}\mathrm{Al}$ $\beta\text{-delayed}$ proton decay and $^{22}\mathrm{Na}$ destruction in novae. Physical Review C, 101, 2020.

M.S. Kwag et al. Spin assignmens for $^{23}{\rm Mg}$ levels and the astrophysical $^{22}{\rm Na}({\rm p},\gamma)^{23}{\rm Mg}$ reaction. European Physical Journal A, 56, 2020.

O.S Kirsebom et al. Measurements of lifetimes in ²³Mg. Physical Review C, 93, 2016.

S.J. Jin et al. Resonant scattering of 22 Na + p studied by the thick-target inverse-kinematic method. *Physical Review C*, 88, 2013.

V. Tripathi et al. Split Isobaric Analog state in ⁵⁵Ni : Case of Strong Isospin Mixing. *Physical Review Letters*, 111, 2013.

R.B. Firestone. https://www.nndc.bnl.gov, 2019.

J. José and M. Hernanz. Nucleosynthesis in Classical Novae: CO versus ONe White Dwarfs. Astrophysical Journal, 494, 1998.

A. Meyer. Etudes expérimentale des réactions ${}^{13}N(\alpha, p){}^{16}O$ et ${}^{30}P(p, \gamma){}^{31}S$, et impact sur les abondances isotopiques extrêmes en ${}^{13}C$, ${}^{15}N$ et ${}^{30}Si$ dans les grains pré-solaires. 2020.

C. Michelagnoli. The lifetime of the 6.79 MeV state in ^{15}O as a challenge for nuclear astrophysics and γ -ray spectroscopy: a new DSAM measurement with the AGATA Demonstrator array. 2013.