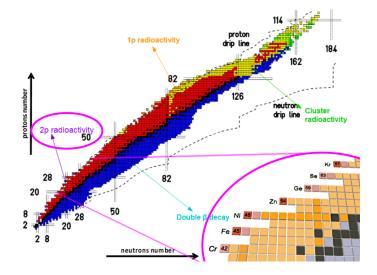
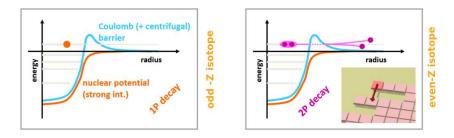
Two proton decay of ${}^{48}Ni$ with ACTAR TPC.

Aurora Ortega Moral

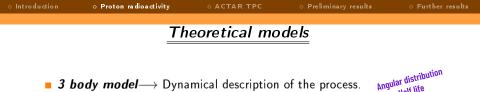
CENBG (CENTRE D'ETUDES NUCLEAIRES BORDEAUX-GRADIGNAN)

Colloque GANIL - September 2021


- Introduction
- Proton radioactivity
- ACTAR TPC
- Preliminary results
- Further results



Aurora Ortega Moral		Colloque GANIL 09/21
Two proton decay of ⁴⁸ Ni with ACT	AR TPC.	1 / 15


Exotic decays

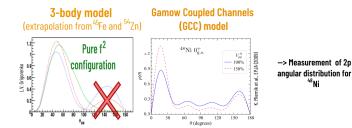
Proton(s) radioactivity

- Pairing energy : There is an extra binding energy if the number of protons are even.
- The system is strongly correlated inside and completely unbound outside (Interesting information about nuclear structure)

Half life

- **3** body model \rightarrow Dynamical description of the process. Agreements with $({}^{45}Fe)$ experiments
- *Hybrid model*→ Mixes both dynamics (3-body model) and Half life structure (shell-model amplitudes) descriptions. Agreements for $({}^{45}Fe, {}^{54}Zn, {}^{48}Ni)$

Disagreements $({}^{67}Kr) \rightarrow$ Two new hypothesis:

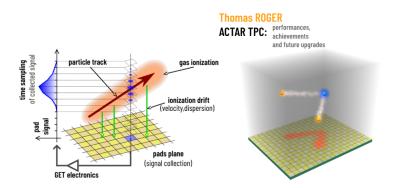

- **Semi-analytical R-matrix calculation** $\longrightarrow {}^{67}Kr$ is in an intermediate situation between 2p emission and a sequential decay proton energies process depending on the position of the intermediate state. (L.V. Grigorenko, PRC 2017)
- Gamow Coupled Channels \rightarrow takes into account the ⁶⁷ Kr Angular distribution Half life deformation.
 - (S.M. Wang & W. Nazarewicz, PRL 2018)

Theoretical models

	Availability of the models		
Model	Observable	⁴⁸ Ni	⁶⁷ Kr
3 body	Т 1/2, Өрр	extrapolation	-
Hybrid	T1/2	yes	Doesn't work
R-Matrix	Ep1/Q2p	-	yes
GCC	Т1/2 & Өрр	yes	yes

Why ⁴⁸Ni ?

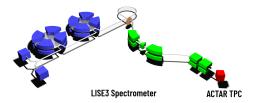
- Accesible today (GANIL)
- Different theory models available
- Spherical (benchmark for GCC model)
- Double magic nuclei (more stable)



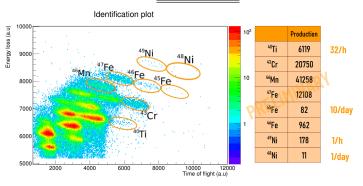
Aurora Ortega Moral

CENBO

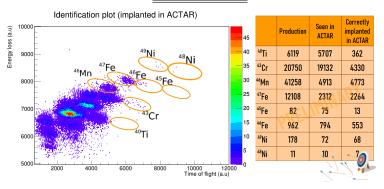
Colloque GANIL 09/21


ACtive TARget Time Projection Chamber

ACtive TARget: Gas=target and detector


- Time Projection Chamber: The signal on each pad is sampled in time for full 3D reconstruction
- 16384 channels (128 x 128 pads)

Preliminary results E791 experiment (GANIL-May 2021)


Aurora Ortega Moral	CENBG		Colloque GANIL 09/21
Two proton decay of ⁴⁸ Ni with ACTAR TPC.		7 / 15	

Production

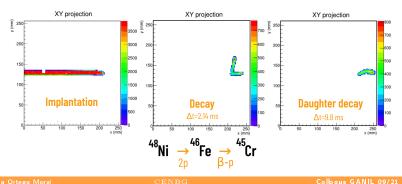
- Produced by fragmentation by a ⁵⁸Ni²⁶⁺ beam with an intensity of about 5μ A on a 210 μm thick ^{nat}Ni target.
- Exotic fragments selected using the LISE3 spectrometer.

Implantation

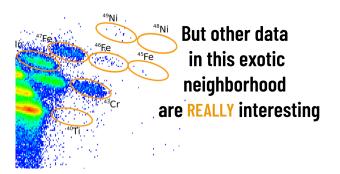
Optimized for ⁴⁸Ni.

Two proton decay of ⁴⁸Ni with ACTAR TPC

Long tuning time due to a low production rate of exotic nuclei .



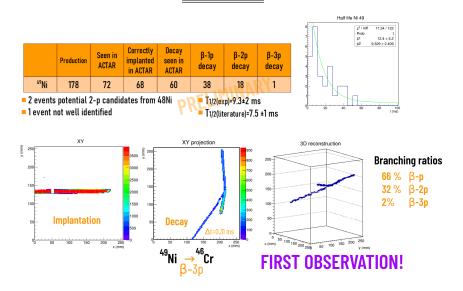
3



T1/2(literature)=2.1 ms

Two proton decay of ⁴⁸ Ni with ACTAR TPC.	10 / 15

Not enough stadistic to build an angular distribution

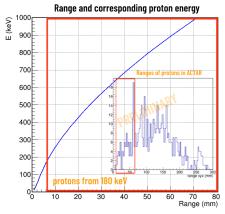


Aurora Ortega Moral

CENBG

Collogue GANIL 09/21

⁴⁹Ni events

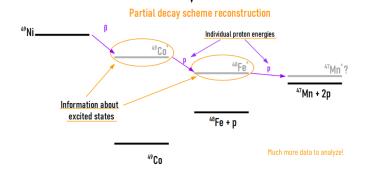


Aurora Ortega Mic		
Two proton deca	y of ⁴⁸ Niwith	ACTAR TPC.

12/15

⁴⁶ Mn , ⁴⁷ Fe events

- $\beta = \beta 2p$ decays for both ⁴⁶Mn , ⁴⁷Fe found for the first time
- Low energy protons (bellow 1 MeV) from β p emissions of ⁴⁶Mn measured for the first time


Give information about unreachable excited states of ${}^{46}Cr$, that enable the study of the inverse reaction ${}^{46}Cr^* \leftarrow {}^{45}V + p$, an important missing ingredient for Supernova of type II models.

(Proposal A.M.Sánchez-Benítez)

Expected further results

- Study of individual proton's energies (1p emission, 2p emission, 3p emission) for the nuclei of interest.
- Branching ratios βp , $\beta 2p$, $\beta 3p$ for the different nuclei ${}^{43}Cr$, ${}^{46}Mn$, ${}^{47}Fe$, ${}^{46}Fe$, ${}^{45}Fe$, ${}^{40}Ti$

Aurora Ortega Moral	CENBG	Colloque GANIL 09/21
Two proton decay of ⁴⁸ Ni with ACTAR TPC.		14 / 15

Do not forget: these results are PRELIMINARY

- Idea of production and implantation events during the experiment
- Some ⁴⁸Ni events with 2 p emission (but too few), also for ⁴⁵Fe
- ⁴⁹Ni half life and branching ratio β -1p, β -2p, β -3p
- Ovserved for the first time: ⁴⁹ $Ni \rightarrow \beta$ -3p, ⁴⁷ $Fe \rightarrow \beta$ -2p, ⁴⁶ $Mn \rightarrow \beta$ -2p, low energy protons

Thanks for your attention

Special thanks to GANIL, ACTAR TPC collaboration, LISE3 collaboration and all e791 experiment participants

urora Ortega Moral

CEN

Colloque GANIL 09/21

1 ◊ Introduction

2 ◊ Proton radioactivity

3 ♦ ACTAR TPC

4 ◊ Preliminary results

5 ♦ Further results

Aurora Ortega Moral	CENBG	Colloque GANIL 09/21
Two proton decay of ⁴⁸ Ni with ACTAR TPC.		15 / 15