

Study of single particle and shape evolution in neutronrich nuclei produced in fusion-fission reactions using AGATA coupled to VAMOS++ and other devices

G. Duchêne for the AGATA collaboration

29/09/2021

Summary

Introduction

- Exp e680: gamma-ray spectroscopy in the N=50 ⁸¹Ga nucleus
- Exp e669: lifetime determination in A~80 mass region (⁸⁴Ge)
- Exp e706: lifetime determination around N=60 in the island of deformation (Zr,Mo and Ru)
- □ Exp e680: explore in ⁹⁶Kr the lower-Z boundary of the N=60 island of deformation
- Exp e661: isomers lifetime determination around ¹³²Sn in Sb and In neutron-rich isotopes

Conclusions

AGATA-VAMOS++ physics campaign 2015-2017

4 fusion-fission experiments

- Intense U beam
- Inverse kinematics
- Forward boost
 - Fission fragments forward focussed
 - Enhances VAMOS acceptance
- > Compact AGATA geometry

AGATA-VAMOS++ physics campaign 2015-2017

4

- GEF

170

180

160

160 170

180

150

AGATA-VAMOS++ physics campaign 2015-2017

Spokesp. year	Exp n°	Goal	Setup	θ _{vamos} Distance Shifts	Nuclei	Publications
G. Duchêne 2015	e680	Υ spectro	AGATA-24 VAMOS++	28° d=13.3 cm 46 shifts	⁹⁶ Kr ⁸¹ Ga ^{83,85,87} As Ge and Zn	PRL 118 162501 2017 PRC 100 011301(R) 2019 Rezynkina (post-doc) In preparation On-going analysis
D. Verney 2015	e669	lifetime	AGATA-24 VAMOS++ Diff plunger	28° d=18.6 cm 30 shifts	⁸⁸ Kr, ⁸⁶ Se, ⁸⁴ Ge 15 nuclei 38 τ Ga-Kr	PRL 121 192502 2018 ActPhysPol B 50 633 2019 Delafosse (PhD)
N. Alahari 2016	e661	Υ spectro lifetime	AGATA-32 VAMOS++ Clover at focal plan	20° d=13.5 cm 46 shifts	¹²¹⁻¹³¹ Sb ¹¹⁹⁻¹²¹ In	PRC 99 064302 2019 PRC 102 014326 2020 EPJA 53 162 2017 Biswas (Post-doc)
W. Korten 2017	e706	lifetime	AGATA-35 VAMOS++ <mark>Diff plunger</mark> 24 FATIMA	19° d= 23.3 cm 31 shifts	⁹⁸⁻¹⁰⁴ Zr ¹⁰⁰⁻¹⁰⁸ Mo ¹⁰⁶⁻¹¹² Ru	Ansari (PhD)

de Strasbourg

$\Box \Upsilon$ spectroscopy in ⁷⁸Ni vicinity

- Explore the structure of nuclei around ⁷⁸Ni₅₀
- $> ^{238}$ U (~6.2 AMeV) + 9 Be --> 247 Cm*
- 46 shifts
- > 205 fission fragments identified
- $> {}^{81}_{31}$ Ga₅₀ nuclear structure
- Lowest reachable N=50 nucleus

e680 – Y spectro above ⁷⁸Ni

Data analysis

- 2 new transitions in cascade with known lines
- Tentative spin/parity assignment based on dominant feeding of yrast states in fission

LSSM calculations

- PFSDG-U interaction
- Valence space: $pf \pi$ orbitals and $sdg \nu$ orbitals
- ✤ ⁶⁰Ca inert core
- F. Nowacki et al., PRL 117, 272501 (2016)
- ✤ N=50 neutron-core breaking
 - Excellent exp-th agreement
- Coupling of the $pf \pi$ to p-h excitations

Persistence of N=50 gap for Z>28

NB: ⁹⁶Kr will be discussed later on

J. Dudouet et al., PRC 100 011301(R) 2019

29/09/2021

Neutron monopole drifts near the N=50 closed shell towards ⁷⁸Ni

- Low-lying state evolution in N=51 nuclei
 - Single particule vs collectivity

C. Delafosse et al., in preparation

- AGATA + VAMOS++ + OUPS differential plunger
- Recoil Distance Doppler Shift (RDDS) method
- $\geq \mathbf{R}(\mathbf{x}) = \mathbf{I}_{\mathrm{U}}(\mathbf{x}) / (\mathbf{I}_{\mathrm{U}}(\mathbf{x}) + \mathbf{I}_{\mathrm{S}}(\mathbf{x}))$
- Bateman equation
- Lifetime determination
- > Ex.: ⁸⁴Ge₅₂ nucleus

Neutron monopole drifts near the N=50 closed shell towards ⁷⁸Ni

- Low-lying state evolution in N=51 nuclei
 - Single particule vs collectivity

C. Delafosse et al., in preparation

- AGATA + VAMOS++ + OUPS differential plunger
- Recoil Distance Doppler Shift (RDDS) method
- $\geq R(x) = I_U(x)/(I_U(x)+I_S(x))$
- Bateman equation
- Lifetime determination
- > Ex.: ⁸⁴Ge₅₂ nucleus

N = 52			This work		Literature	
Nucleus	$J^{\pi}_i ightarrow J^{\pi}_f$	E_{γ} [keV]	τ [ps]	$B(E2; J_i^{\pi} \rightarrow J_f^{\pi}) \ [e^2 \ \text{fm}^4]$	τ [ps]	$B(E2; J_i^{\pi} \rightarrow J_f^{\pi}) \ [e^2 \ \text{fm}^4]$
⁸⁸ Kr	$2^+ \rightarrow 0^+$	775.4(1)	$10.6^{+4.8}_{-5.0}$	273.6 ^{+244.3}	16.0(17) [30]	262(38) [31]
⁸⁶ Se	$2^+ \to 0^+$	704.0(1)	$10.3^{+1.2}_{-2.2}$	456^{+124}_{-48}	$10.8^{+6.9}_{-3.7-0.3}$ [25]	422(64) [31]
⁸⁴ Ge	$2^+ \rightarrow 0^+$	624.3(9)	$13.8_{-9.8}^{+7.9}$	$621.2^{+1522.0}_{-226.2}$		
	$4^+ \rightarrow 2^+$	805.4(11)	$10.3^{+3.0}_{-6.5}\ (*)$	$232.9^{+398.4}_{-52.5}$		

- \geq 2⁺ lifetimes of ⁸⁸Kr, ⁸⁶Se, ⁸⁴Ge
- > Agreement with Kr, Se coulex data
 - B. Elman et al., PRC 96 044332 (2017)
- Unexpectedly large B(E2) values in ⁸⁴Ge
- > Theoretical approach
 - * "DD-PC1": beyond meanfield calculations using the relativistic functional DD-PC1; this work
 - SM,Ni78-I" shell-model calculations
 - K. Sieja et al., PRC 88 034327 (2013)
 - P-SU(3)": pseudo-SU(3) limit
 - * " $(g_{9/2})$ P-SU(3)": pseudo-SU(3) limit including one N=50 core-breaking $g_{9/2}$ v pair promotion
 - K. Sieja et al., PRC 88 034327 (2013)

29/09/2021

Université de Strasbourg

Discussion

- Both the SM and B(E2)_{exp} values in Kr and Se exhaust the limit for pure Pseudo-SU(3) symmetry
- In ⁸⁴Ge consider the 2p-2h excitation from vg_{9/2} to vg_{7/2}ds orbits (P-SU(3) fp block)
- DD-PC1 calculations indicate the appearence of a K=1/2 and K=3/2 π doublet (Λ+/-1/2) in a prolate Ge

The authors conclude that the $\pi f_{5/2}p$ single-particle arrangement triggers quadrupole coherence in ⁸⁴Ge and emerges from pseudo-spin symmetry

C. Delafosse et al., PRL 100 011301(R) 2019 11

29/09/2021

□ Drastic shape change at N=60

- E*(2⁺) drop from N=58 to N=60 strongly for Sr, Zr and Mo
- B(E2; 2⁺ -> 0⁺) values show an onset of collectivity
- \geq E(4⁺)/E(2⁺) rises above 3 in Zr isotopes
- > Arises from the strong $\pi g_{9/2}$ -vg_{7/2} interaction
- > Reduction of the $vg_{7/2}$ - $d_{5/2}$ gap as well as the $\pi p_{1/2}$ - $g_{9/2}$ gap
- Favores the deformation building
- Lowering of E*(0₂⁺) from ⁹⁶Zr to ⁹⁸Zr and which becomes the g.s. in ¹⁰⁰Zr

Experiment

- Differential plunger/RDDS method (~1- few100 ps)
- FATIMA detectors/fast-timing method (few 10 – few 100 ps): not part of this study
- $\stackrel{>}{\sim} Measurement of lifetimes up to$ $8^+ in ⁹⁸⁻¹⁰⁴₄₀Zr, ¹⁰⁰⁻¹⁰⁸₄₂Mo and ¹⁰⁶⁻¹¹²₄₄Ru$

Analysis

- Decay Curve Method (DCM)
- Differential Decay Curve Method (DDCM)
- Y-Y coincidence DCM or DDCM
- Sum method

29/09/2021

Université de Strasbourg

The N=60 region has been explored at higher spins confirming the drastic shape change from 98 Zr to 100 Zr, the rise of deformation with spin and with neutron numbers

e680 – Y spectro above ⁷⁸Ni

DNew structure in ${}^{96}_{36}$ Kr₆₀

Charge radii and mass measurements indicate a smooth development of collectivity in Kr chain

First excited state at 241 keV

Marginean et al., PRC 80 021301 (2009)

 $> 2_1^+$ state at 554 keV

Albers et al., PRL 108 062701 (2012), NPA 899 1 (2013)

Present work

- New 621 keV transition in coincidence with 554 keV
- E* and B(E2) not correlated in ⁹⁶Kr
- No onset of collectivity at N=60 in Kr chain

⁹⁶₃₆Kr₆₀ is the low-Z boundary of deformation at N=60

G. Duchêne

□ Nuclear structure around ¹³²Sn

- Sn isotopes below ¹³²Sn
 - Signature partner π orbitals $g_{9/2}$ and $g_{7/2}$ frame the Z=50 magic gap
 - * The v $s_{1/2}$, $d_{3/2}$ and $h_{11/2}$ orbitals are almost degenerated
 - Sn seniority isomers are known
 - $\frac{\text{Even }^{132-x}\text{Sn }(\upsilon=2)}{7^{\circ} \text{ with } \nu(h_{11/2})^{-1} (d_{3/2})^{-1} \text{ config}} \\ 10^{+} \text{ with } \nu(h_{11/2})^{-2} \text{ config}} \\ \circ \underline{\text{Odd }^{132-x}\text{Sn }(\upsilon=3)} \\ 23/2^{+} \text{ with } \nu(h_{11/2})^{-2} (d_{3/2})^{-1} \text{ config}} \\ 27/2^{\circ} \text{ with } \nu(h_{11/2})^{-3} \text{ config}}$
- ➢ Sb and In isotopes below N=82
 - Add one π in $g_{7/2}$ for v-rich Sb
 - Remove one π from $g_{9/2}$ for v-rich In

Study the effects of the πv interaction on the nuclear structure near N=82

Y.H. Kim et al., EPJA 53 162 2017

29/09/2021

> Experimental results

- 18 isomer lifetimes measured (16 Sb and 2 In) in the 60 ns to 7.3 µs range) among which 8 new ones
- In addition, 2 isomers identified in In isotopes with too short lifetimes < 10 ns</p>
- $(25/2^+)$ lifetime in ¹²¹In $\tau=7.3(2) \mu s$ in contrary to previous exp data $(350(50) \text{ ns and } 17(2) \mu s)$
- Neutron pair-breaking energies ($\upsilon \rightarrow \upsilon+2$) in Sn and Sb determined to be constant at 1.1+/-0.1 MeV

Shell-model calculations

- Restricted shell-model space
 - $\circ \quad \nu {:} \ d_{3/2}, \ s_{1/2} \ and \ h_{11/2} \ orbitals$
 - π : $g_{9/2}$ and $g_{7/2}$ orbitals
 - o Matrix elements and pairing terms modified
- Neutron seniority υ and angular- momentum I mixing are predicted
- In Sb isotopes, both υ and I mixing increase with increasing number of valence neutrons (lower A)

Concluded to large nuclear structure effects near N=82 due to the strong interaction of the π particle (g_{7/2}) or hole (g_{9/2}) orbitals with the vh_{11/2} orbital

S. Biswas et al., PRC 99 064302 2019

29/09/2021

Université de Strasbourg

Colloque GANIL 2021

S. Biswas et al., PRC 102 014326 2020

21

Conclusions and perspectives

Conclusions

Despite the rather modest detection efficiency of AGATA (3-4% at 1 MeV)

- > $pf \pi$ coupling to p-h v excitations across the N=50 gap in ⁸¹Ga
- Influence of the pseudo-spin SU(3) symmetry in the unexpectedly large collectivity in ⁸⁴Ge
- Effects of the πv interaction around ¹³²Sn and of angularmomentum and seniority mixing
- Ilsland of deformation at N=60 explored at rather high spins in Zr, Mo and Ru isotopes
- Determination of the lower-Z boundary of the N=60 deformation island in ⁹⁶Kr

Perspectives

- Increase of AGATA efficiency by addition of triple clusters
- > Installation at LNL on-going
- Physics campaigns with stable beams and SPES RIBs

Thanks for your attention

Thanks also to:

- the spokespersons
- Ch. Schmitt
- E. Clément
- F. Nowacki
- ???????

