

ACTAR TPC: Performances, achievements and future upgrades

30/09/2020

aboratoire commun CEA/DRF

T. Roger - Colloque GANIL 2021

DIVERTIA A SA

ACTAR TPC : Design

300 mm

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

- ✓ Drift region: principle
 - Transparent to particles on 4 sides
 → Wire field cage
 - Homogeneous vertical drift electric field
 - \rightarrow Double wire field cage: 2 mm/1 mm pitch
- ✓ Amplification region: principle
 - Bulk Micromegas (CERN PCB workshop)
 - Local gain reduction via pad polarization
- ✓ Segmented pad plane
 - Micromegas
 - → transverse multiplicity \approx electron straggling: 2x2 mm² pads
 - 16384 pads with very high density: challenge!
 - \rightarrow Two solutions investigated
- ✓ Electronics: GET

GET electronics:

- 512 samples ADC readout depth x 16384 pads
- \rightarrow volume sampling in 8 Mega voxel
- adjustable gain, peaking time, individual trigger: pad per pad

30/09/2020

T. Roger - Colloque GANIL 2

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

Physics cases addressed:

□ Study of excitation functions (resonant scattering, etc...)
 → thick target, need to differentiate the reactions channels

□ Reactions with very negative Q-value in inverse kinematics
 → recoil stops inside the target

Reactions with (very) low intensity beams

 Thick target, possibly no ¹²C contamination

□ Time Projection Chamber mode

 \rightarrow Ideal for implantation/decay studies

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

Physics cases addressed:

□ Study of excitation functions (resonant scattering, etc...)

 \rightarrow thick target, need to differentiate the reactions channels

Reactions with very negative Q-value in inverse kinematics

 \rightarrow recoil stops inside the target

Reactions with (very) low intensity beams
 → thick target, possibly no ¹²C contamination

Time Projection Chamber mode

 \rightarrow Ideal for implantation/decay studies

Resonant scattering : principle

✓ "Classic" TTIK method (thick solid target, beam stopped inside):

- 3 unknown: E_{CM} , θ_{CM} , E^* but only 2 observables (θ_{light} , E_{light})
- \rightarrow unable to disentangle elastic and inelastic channels (no info on E^{*})
- ✓ Active Target: one more kinematic parameter (stopping point of the beam-like particle)
 - \rightarrow full identification of the reaction
 - + reconstruction of double differential cross section ($d^2\sigma/d\Omega dE$)

B. Mauss, PhD thesis (GANIL)

Resonant scattering : performances

✓ Commissioning of the 128x128 pad full detector ¹⁸O(p,p) and ¹⁸O(p, α) excitation functions: → 3.2A MeV ¹⁸O beam in 100 mbar iC₄H₁₀

B. Mauss, et al., NIM A 940, 498 (2019)

 \rightarrow Resolution limited by the angular straggling of the ions in the gas

spin 2

Resonant scattering : possible upgrade

 \checkmark Resonant scattering : Ecm resolution dominated by the angular straggling in the gas

 \rightarrow Use pure H₂ gas instead of isobutane :

example with ²⁰O+p excitation function, initial energy = 5*A* MeV

	iC_4H_{10}	H ₂	CH ₂
Pressure for stopping the beam	206 mbar	2.87 bar	165 µm
dN _{proton} /dE @ 3A MeV (protons/MeV)	2.4.10 ²⁰	7.2.10 ²⁰	2.2.10 ²⁰
Angular straggling for 5 MeV proton on 10 cm gas	11 mrad	6.5 mrad	12.6 mrad

 \rightarrow requires high pressure (partially accomplished)

 \rightarrow requires amplification system for pure mono/diatomic gas (GEM): ongoing

Resonant scattering : 1st physics result

✓ Search for α -cluster states in ¹⁰B (B. Mauss, PhD thesis) ⁶Li(α , α) elastic and inelastic excitation functions @ LNS, Catania

Resonant scattering : 1st physics result

Search for α -cluster states in ¹⁰B (B. Mauss, PhD thesis) ⁶Li(α, α) elastic and inelastic excitation functions @ LNS Catania

Y. Kanada-En'yo, M. Kimura, A. Ono, PTEP, 01A202 (2012)

 \rightarrow Large similarities with ¹⁰Be rotational bands Interpretation ongoing...

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

Physics cases addressed:

Study of excitation functions (resonant scattering, etc...)→ thick target, need to differentiate the reactions channels

□ Reactions with very negative Q-value in inverse kinematics

 \rightarrow recoil stops inside the target

Reactions with (very) low intensity beams
 → thick target, possibly no ¹²C contamination

Time Projection Chamber mode

 \rightarrow Ideal for implantation/decay studies

Inelastic scattering : performances

✓ Study of the Giant Monopole Resonance in the Ni chain (April 2019) 58,68 Ni(α,α') : → 49A MeV 58,68 Ni beams in 400 mbar He(98%) + CF₄(2%)

182

Inelastic scattering : performances

✓ Study of the Giant Monopole Resonance in the Ni chain (April 2019) 58,68 Ni(α,α') : → 49A MeV 58,68 Ni beams in 400 mbar He(98%) + CF₄(2%)

Courtesy B. Mauss & M. Vandebrouck PhD thesis A. Arokia Raj (K.U. Leuven)

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

Physics cases addressed:

Study of excitation functions (resonant scattering, etc...)

 \rightarrow thick target, need to differentiate the reactions channels

Reactions with very negative Q-value in inverse kinematics → recoil stops inside the target

Reactions with (very) low intensity beams

 Thick target, possibly no ¹²C contamination

Time Projection Chamber mode → Ideal for implantation/decay studies

Transfer reactions

✓ Study of the ¹⁹N(d,³He) reaction (2020-2021-2022) ¹⁹N at 30A MeV in 1 bar $D_2(90\%)$ + i C_4H_{10} (10%) → Equivalent **11 mg/cm²** C D_2 target

Transfer reactions

✓ Study of the ¹⁹N(d,³He) reaction (2020-2021) ¹⁹N at 30A MeV in 1 bar $D_2(90\%)$ + i C_4H_{10} (10%) → Equivalent **11 mg/cm²** C D_2 target

Thick target, E* resolution limited by the Silicon energy resolution...
BUT: Delta Electrons mess up things (pad multiplicity trigger not possible)
→ Visible with high energy beam & high gain (i.e. high energy light recoils)

J. Lois-Fuentes PhD thesis (U. Santiago de Compostella)

Transfer reactions

✓ Study of the ¹⁹N(d,³He) reaction (2020-2021) ¹⁹N at 30A MeV in 1 bar D₂(90%) + iC₄H₁₀ (10%) → Equivalent **11 mg/cm²** CD₂ target

Problem of delta electrons: target with more stopping power

- \rightarrow Ok for "high energy" recoils \rightarrow losing (very) forward c.m. angles
- \rightarrow e.g. C_4D_{10} @ 400 mbar \rightarrow Equivalent 26 mg/cm² CD₂ target

→ expensive gas! Requires Recirculation/Purification system (ongoing)

Active target: (Gaseous) detector in which the atoms of the gas are used as a target

Physics cases addressed:

Study of excitation functions (resonant scattering, etc...)

 \rightarrow thick target, need to differentiate the reactions channels

Reactions with very negative Q-value in inverse kinematics

 \rightarrow recoil stops inside the target

Reactions with (very) low intensity beams
 → thick target, possibly no ¹²C contamination

□ Time Projection Chamber mode

 \rightarrow Ideal for implantation/decay studies

✓ Proton-decay branches from the 10⁺ isomer in ⁵⁴Ni (May 2019) ⁵⁴Ni implantation – proton decay: → 10*A* MeV ⁵⁴Ni beam in 900 mbar Ar(95%) + $CF_4(5\%)$

✓ Simultaneous observation of Ni track (6 MeV/pad) and proton tracks (60 keV/pad)

 \checkmark Decay of T_{1/2} = 155 ns isomer : OK!

✓ Proton-decay branches from the 10⁺ isomer in ⁵⁴Ni (May 2019) ⁵⁴Ni implantation – proton decay: → 10*A* MeV ⁵⁴Ni beam in 900 mbar Ar(95%) + $CF_4(5\%)$

J. Giovinazzo et al.: 4D imaging of proton radioactivity, Nature communications 2021 J. Giovinazzo (2020)

 \rightarrow C²S of the order of 10⁻⁶

- the "high l" orbitals that mediate proton radioactivity in this region are also active in super-heavy nuclei and responsible for magic numbers in these nuclei

✓ Proton-decay branches from the $19/2^{-1}$ isomer in ⁵³Co (May 2019) ⁵³Co implantation – proton decay: → 10*A* MeV ⁵³Co beam in 400 mbar Ar(95%) + CF₄(5%)

L. Sarmiento et al.: to be published

Decay of $T_{1/2}$ = 239 ms isomer : OK

- Measurement of 0.025 % BR : OK
- **BUT : implantation profile larger** than the TPC length

50 years after the discovery of proton radioactivity (^{53m}Co), we reach a complete comprehension of this state

30/09/2020

T. Roger - Colloque GANIL 2021

✓ Two-Proton decay of ⁴⁸Ni (May 2021)

Two proton decay of ⁴⁸Ni with ACTAR TPC.

Aurora Ortega Moral

CENBG (CENTRE D'ETUDES NUCLEAIRES BORDEAUX-GRADIGNAN)

Colloque GANIL - September 2021

implantation profile larger than the TPC length

Aurora Ortega Moral	CENBG	Colloque GANIL 09/21
Two proton decay of ⁴⁸ Ni	with ACTAR TPC	1 / 15
30/09/2020	T. Roger – Collo	aue GANIL 2021

Implantation profile larger than the TPC length : inherent to "high energy" fragmentation beams: straggling

- \rightarrow Use a longer TPC !
- \rightarrow L-ACTAR : 256 x 64 pads (512 mm x 128 mm)

Summary

✓ Resonant scattering : Ecm resolution dominated by the angular straggling in the gas → Optimized with pure H_2 gas (proton scattering)

✓ Inelastic scattering : access to (very) forward cm angles. Resolution in E^* dominated by the range straggling in the gas

 \rightarrow No real amelioration possible

✓ Implantation / decay : no detection dynamics problem, OK for lifetimes > ~ 100 ns.
 Possible problem due to the large implantation profile inherent to fragmentation beams

 \rightarrow Built a twice longer detector

✓ Transfer reactions : possibly very efficient for low energy beams (no delta rays)
 Not ideal for high energy reactions → Better use « classic » method
 (MUGAST/GRIT) when possible

Future developments

LoI (C. Borcea et al.): use ACTAR TPC for SHE synthesis via two body reactions producing high energy α particles at 0° using ^{132/134}Xe gas for target

- 1. Requires to send high intensity / heavy beam in ACTAR
 - \rightarrow Beam region must be screened to prevent distortions of the drift electric field
 - → Construction of an electrostatic beam mask (ongoing) **mask with double wire planes**

C. Rodriguez et al., NIM A768, 179 (2014)

space charge density 140 pC/cm3 \rightarrow Equivalent: 10⁶ Hz of ¹³⁶Xe @ 7A MeV in 100 mbar iC_4H_{10}

Future developments

- ✓ LoI (C. Borcea et al.): use ACTAR TPC for SHE synthesis via two body reactions producing high energy α particles at 0° using ^{132/134}Xe gas for target
 - 1. Requires to send high intensity / heavy beam in ACTAR
 - \rightarrow Beam region must be screened to prevent distortions of the drift electric field
 - \rightarrow Construction of an electrostatic beam mask (ongoing)
 - 2. Requires to recirculate (and purify) the gas
 - → Project financed by Région Normandie
 - \rightarrow Postdoc position opened for 2 years at GANIL

ACTAR TPC Collaboration

