Preliminary results on Z, N fission yields in inverse kinematics at VAMOS++

Daniel Fernández

IGFAE Instituto Gallego de Física de Altas Energías Departamento de Física Nuclear y de Partículas Universidad de Santiago de Compostela, Spain

XXIInd GANIL Colloque

E753 Experiment

Aluminium target Db265 Isotopic Fission Yields

Aluminium target Db265 Isotopic Fission Yields

Aluminium target Db265 Y(A) and Y(Z) distributions

Aluminium target Db265 Neutron Evaporation and Standard Deviation of Y(Z,A)

Y(A) standard deviation:

- (1) More evaporation gives a higher σ, but the opposite effect is seen; probably due to quasi-fission.
- (2) Our σ increases due to quasi fission, which GEF doesn't include.

Total neutron evaporation:

- (1) GEF gives higher neutron emission than our data.
- (2) The central zone is not flat for GEF.

Aluminium target Db265 Neutron Excess and Even-Odd Staggering

- (1) GEF predicts higher neutron emission before scission and therefore less excitation energy, which increases the even-odd effect.
- (2) The Even-Odd effect is bigger in our data probably due to quasi-fission. It seems that $\delta_{QF} > 0$

Neutron Excess:

Neutron excess is very sensitive to the structure effects, but we don't seem to have any (?) Z=44.

- (1) Low neutron evaporation provides higher neutron excess in the data than in GEF.
- (2) There is a strong deviation from GEF in the heavy fragment but not in the light one.

- Observation of fission (265Db) and quasi-fission consistent with previous experiment.
- GEF is a powerful model but at these energies the neutron evaporation is overestimated. This justifies the need for new data in this region.
- In fission we see a behavior change (Z=44) in $\frac{\langle N \rangle}{Z}$ which is very sensitive to the structure.
- VAMOS brings promising observables to disentangle fission and quasi-fission. These observables reveal features in quasi-fission that need a deeper analysis.

Future perspectives

- Analyze more observables: TKE and TXE
- Get the results of the other targets: B, Mg, Be for a more complete systematics on high E* fission and quasi-fission.

Thank you for your attention!