In vitro dosimetry for assessment of Targeted-α-Therapy (TαT)

XXIInd Colloque GANIL – Applications

September 30, 2021

A. Doudard¹, A. Corroyer-Dulmont^{2,3}, C. Jaudet², M. Bernaudin³, S. Valable³, A.M. Frelin-Labalme¹

¹Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF CNRS/IN2P3, 14076 Caen, France

²Medical Physics Department, CLCC François Baclesse, 14000 Caen, France

³Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France

* This project was funded by the CNRS/MITI.

- Metastases are detectable once formed, treatment via radiosurgery, radiotherapy and/or chemotherapy.

→ Multiple locations + potential radio-induced brain damage → poor prognostic (brain metastases: 6 months)

- Detection and treatment of early stages of brain metastasis formation: Targeted Radionuclide Therapy (TRT)

XXIInd Colloque GANIL – In vitro dosimetry for assessment of Targeted-a-Therapy – Alexis Doudard

2

In vitro assessment of TRT

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

- > Goal of *in vitro* tests: measure biological effectiveness as a function of the delivered dose to the cells.
 - MIRD formalism:

15

- *In vitro* configuration:

From spectral acquisitions to delivered doses

> Development of a new TαT dosimetry system:

→ Acquisition of energy spectra of the alpha particles emitted through the culture medium and cell layer ;

 \rightarrow Application of a spectral deconvolution method to estimate the spatial and temporal distribution of the radionuclides ;

 \rightarrow Reconstruction of the dose deposited on the cells through Monte-Carlo simulations.

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

a-detector under culture well

Deconvolution following a parametric model

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

- Time evolution: t-discretization

 Decomposition of experimental spectra as a sum of elementary spectra: z-discretization

$$\longrightarrow SP_{exp}(t_k, E) = \sum_i A(t_k, z_i) \cdot SP_{elem}(z_i, E)$$

- Constraints: Parametric description of activities

$$A(t_k, z_i) = A(z_i, p_1(t_k), p_2(t_k), ...)$$

- A satisfying model: exponential distribution

$$\rightarrow \qquad A(t_k, z_i) = a(t_k) \cdot e^{-b(t_k) \cdot z_i} + h(t_k)$$

A.M. Frelin-Labalme et al., Med. Phys. (2020)

3 parameters

Deconvolution as a matrix optimization: notions

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

• $SP_{exp}(t, E) = \sum_{i} A(t, z_i) \cdot SP_{elem}(z_i, E)$

For each time interval

$$Y = Xa$$
, $a_{sol} = \min_{a} ||Xa - Y||^2$

Additionnal physical constraints on a
 (positivity, limited sum of activities, ...)

$$\begin{array}{c|c}
Ca_{sol} = c \\
d_{min} \leq Da_{sol} \leq d_{max} \\
a_{min} \leq a_{sol} \leq a_{max}
\end{array}$$

(Quadratic programming)

• Examples

8

No constraints on a

Least Squares (LS)

Algebraic resolution

Pseudo inverse : $a_{LS} = (X^T X)^{-1} X^T Y$

Deconvolution as a matrix optimization: NNLS-based methods

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

• The objective function can be modified to adapt a particular modelization :

 $A(t_k, z_i) = a(t_k) \cdot e^{-b(t_k) \cdot z_i} + h(t_k)$

ightarrow Monotonicity of successive derivatives, property of the exponential model

• Other possibilities (can be conbined):

```
→ Removal of constraints
near the bottom culture wells
```

 \rightarrow Likelihood maximisation criterion instead of least squares

→ Irregular spatial sampling of the elementary spectra (adaptative resolution)

Application to a clinical radiopharmaceutical

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

Goal : assessment of the experimental set-up and of the deconvolution methods

FASTER module and voltage supplies

15

Light-tight container

Diode support and culture wells

- Measurements with an α -emitter radiopharmaceutical: Xofigo (Cl₂²²³Ra), at the CLCC François Baclesse (Caen, France).

• 4α-emission spectrum (5.6 MeV, 6.7 MeV, 7.4 MeV, 6.4 MeV) (²¹²Pb : 1α, 2 decay paths, 6.1 MeV & 8.8 MeV).

Measurements with ²²³Ra (1/4) – Radionuclides mobility

Overview - Detection system **Deconvolution** methods Application to ²²³Ra - Outlooks

- 3 configurations studied:

- Liquid solution of activity An
- Liquid solution of activity $A_0/2$
- Gelified solution of activity A₀ with SuperAbsorbent Polymer

(SAP, Curas)

- Higher stability of hitrate in time with the gelified solution

 \rightarrow Showcases the displacement of radionuclides during *in vitro* experiments

Measurements with ²²³Ra (2/4) – Reproducibility

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

- Both spectra sets correspond to two separate wells filled with 9,3 kBq of the same liquid solution of $^{\rm 223}\rm Ra.$

• Different hitrate profiles hint at different distribution kinetics for each well.

12

Hitrates comparison

→ Dose uncertainty estimations must also consider potential lack of reproducibility of the tests

Measurements with ²²³Ra (3/4) – Deconvolutions

Activity distribution

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

Matrix deconvolution methods application

- Set of spectra obtained for a well filled with an activity $A_0 = 9,3 \text{ kBq}$ of ^{223}Ra

- ²¹¹Bi distribution strongly differs to the rest of the decay chain ($T_{1/2}$, ²¹¹Pb = 36 min)

• A three-way sepration of the spatial distributions leads to the best experimental spectra reconstructions (based on information criteria)

• Majority of the information lies in a short energy range : overfitting issues

Measurements with ²²³Ra (3/4) – Deconvolutions

Activity distribution

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

Matrix deconvolution methods application

- Set of spectra obtained for a well filled with an activity A_0 = 9,3 kBq of ²²³Ra

- ^{211}Bi distribution strongly differs to the rest of the decay chain (T_{1/2},^{211}\text{Pb} = 36 min)

• A three-way sepration of the spatial distributions leads to the best experimental spectra reconstructions (based on information criteria)

• Majority of the information lies in a short energy range : overfitting issues

Measurements with ²²³Ra (3/4) – Deconvolutions

Activity distribution

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

Matrix deconvolution methods application

- Set of spectra obtained for a well filled with an activity A_0 = 9,3 kBq of ^{223}Ra

- ^{211}Bi distribution strongly differs to the rest of the decay chain (T_{1/2},^{211}\text{Pb} = 36 min)

• A three-way sepration of the spatial distributions leads to the best experimental spectra reconstructions (based on information criteria)

- Majority of the information lies in a short energy range : overfitting issues

Measurements with 223 Ra (4/4) – Dose computation

15

Average dose to cells per alpha 0.1×10⁻⁶ ²¹⁹Rn ²¹⁵Po ²¹¹Bi 0.09 Range ²²³Ra Range ²¹⁹Rn Range ²¹⁵Po Range ²¹¹Bi 0.08 ~2 mm 0.07 Culture medium 0.06 0.05 0.04 ~20 um 0.03 Cell Medium 0.02 0.01 • Ongoing study. 0 10 20 30 40 50 60 Distance from the cell medium (um) Dose rates to a 20 µm water cylinder Cumulated dose to a 20 µm water cylinder 0.01 rate (Gy/min) Dose (Gy) Measured distribution Measured distribution 0.009 0.008 Uniform and static distribution Uniform and static distribution Dase 0.007 0.8 0.006 0.6 0.005 0.004 0.4 0.003 0.002 0.2 0.001 0 0 140 40 100 120 140 20 100 120 Time (min) Time (min) 14

Overview - Detection system Deconvolution methods Application to ²²³Ra - Outlooks

• Simulated cell geometry: 20 µm-high water cylinder.

- For every sampled height, mean delivered dose to the cells per α emitted is computed.

- Continuous aspects of dose rate and cumulated dose graphs: limited overfitting impact.

3 to 4-fold underestimation

Conclusion - Outlooks

15

- **Δ** Short a emissions range: source of important *in vitro* dosimetry errors under homogeneity assumptions.
- Matrix deconvolution easily adjusts physical or hypothetical needs. Computational speed and portability of the set-up: on-site dose estimations.
- Noticeable overfitting for complex decay schemes. Consequences on dose computation uncertainties are currently evaluated.
- Cell modelling impact on dose computation is currently studied.
- First measurements of ²¹²Pb injected in cell cultures under *in vitro* conditions: end of 2021.

Thank you for your attention.

