

Decay of the stretched resonance in ¹³C studied by gamma-particle coincidences as a testing ground for Gamow Shell Model

Participants and collaboration

N. Cieplicka-Oryńczak, B. Fornal, M. Ciemała, M. Kmiecik, A. Maj, J. Łukasik, P. Pawłowski, B. Sowicki, B. Wasilewska, M. Ziębliński, I. Ciepał, M. Krzysiek, M. Matejska-Minda, K. Mazurek, W. Parol, B. Włoch, Y. Jaganathen Institute of Nuclear Physics PAN, Kraków, Poland

> S. Leoni, C. Boiano, S. Brambilla, S. Ziliani, S. Bottoni, A. Bracco, F. Camera, Ł. W. Iskra University of Milan and INFN Sezione di Milano, Milan, Italy

> > M. N. Harakeh KVI, Groningen, Netherlands

N. Marginean, C. Clisu, N. Florea, R. Marginean, L. Stan, I. Burducea, D. A. Iancu IFIN-HH, Magurele, Romania

M. Sferazza Universite libre de Bruxelles, Brussels, Belgium

> M. Płoszajczak GANIL, Caen, France

P. Kulessa Institut für Kernphysik, Jülich, Germany

XXIInd Colloque GANIL - 29 September 2021 - Autrans-Meaudre en Vercors, FRANCE

Outline

- What is a "stretched" state?
- ¹³C the first case studied at Cyclotron Centre Bronowice (Kraków, Poland)
- Experiment and results of analysis:
 - Scattered protons gamma ray coincidences
 - Scattered protons light charged particles coincidences
- Theoretical calculations within Gamow Shell Model -Y. Jaganathen (IFJ PAN, Poland), M. Płoszajczak (GANIL, France)

Stretched states

Such states are dominated by a single particle-hole component for which the excited particle and the residual hole couple to the maximal possible spin value:

 $J_{\text{max}} = j_{\text{p}} (\text{max}) + j_{\text{h}} (\text{max})$

Stretched states in light nuclei (M4 resonances) - continuum region

CONFIGURATIONAL PURITY

simplest known nuclear excitations providing clean information on the details of nuclear force

TESTING GROUND FOR THEORETICAL CALCULATIONS

properties of stretched states (decay patterns e.g.) used as <u>demanding test of state-of-the-art theory approaches</u> (Gamow Shell Model e.g.)

Previous studies of stretched states in ¹³C

 $E_{p} = 135 \text{ MeV}$ 21.47 GATE ON SCATTERED PROTONS

Inelastic proton scattering on ¹³C

EXCITATION ENERGY (MeV)

Indiana University Cyclotron Facility Magnetic Spectrograph, S.F. Collins et al., Nuc. Phys. A481, 494(1988)

Experimental setup - Cyclotron Centre Bronowice (Kraków, Poland)

- 1) Scattered protons measurement: KRATTA telescope array 2) γ -ray detection:
 - four LaBr₃ detectors (3"x3")
 - two clusters of the PARIS scintillator array
- 3) Measurement of light charged particles produced in the reaction: a thick position-sensitive Si detector

KRATTA - excitation energy spectra measured at ~36°

EXCITATION ENERGY[MeV]

Stretched states in the continuum - Gamow Shell Model calculations

The Gamow Shell Model is an open-quantum system extension of the traditional Shell Model, which provides a rigorous treatment of the many-body correlations and the coupling to the resonant and non-resonant particle continuum.

Calculations by Y. Jaganathen (IFJ PAN) and M. Płoszajczak (GANIL)

- Model space specifically adapted to describe the M4 state:
 - an effective ⁴He core modeled by a Woods-Saxon + spin-orbit + Coulomb terms
 - > 3 effective holes max. in the ¹²C core
 - > *psdf*_{7/2} model space
 - an effective finite-range NN potential with central, spin-orbit and tensor terms
- The depths of the one-body potential and the 8 parameters of the NN interaction were adjusted to the low-lying spectra of ¹²B, ¹²C, ¹²N, ¹³C, ¹³N, as well as ¹⁴C, ¹⁴N, ¹⁴O

State	E _{calc} (MeV)	E _{exp} (MeV)
¹² B, 1-, T=1	2.467*	2.261
¹² B, 2-, T=1	1.368*	1.674
¹² B, 2+, T=1	0.749*	0.953
¹² B, 1+, T=1	-0.164*	0.0
¹² C, 2+, T=1	16.767(4)	16.106
¹² C, 1+, T=1	15.667(4)	15.11
¹² C, 2+, T=0	4.81*	4.44

(*) fitted

CANDIDATES FOR THE 21.5-MeV M4 RESONANCE IN ¹³C:

J=7/2+	T=3/2	E = 21.832 MeV	Γ = 400(500) keV
J=9/2+	T=3/2	E = 22.594 MeV	Γ = 150(300) keV

Stretched states in the continuum - Gamow Shell Model calculations (by Y. Jaganathen (IFJ PAN) and M. Płoszajczak (GANIL))

Summary

The first information on the decay branching of the 21.47-MeV stretched state in ¹³C nucleus was obtained from proton-gamma coincidence measurements.

For the first time **Gamow Shell Model calculations** are being performed for such "heavy" system.

Comparisons with experiment in terms of **states energies and decay branchings** are being performed for the first time and they seem to be successfull.

Better understanding of the decay pattern!

This newly developed approach will be crucial in predicting structures in the continuum in other nuclei in this key region of nuclear chart.

Thank you for your attention!