Scientific opportunities at S3 and DESIR: ground-state nuclear structure

Iain Moore

Department of Physics, University of Jyväskylä, Finland

Outline

- The atomic mass and nuclear structure
- Trap-assisted spectroscopy
- Nuclear fingerprints on atomic spectra
- Ground- and isomeric state studies below ¹⁰⁰Sn
- Proton-rich studies between ⁴⁰Ca and ⁵⁶Ni
- Summary

Why do we measure atomic masses?

 $m(A,Z) = Z \cdot m_p + (A-Z) \cdot m_n + Z \cdot m_e - B(A,Z)$ δm for m=100 u δm/m (*μ*u) (keV) General physics & < 10⁻⁵ 1000 1000 chemistry Nuclear structure physics < 10⁻⁶ 100 100 - separation of isobars MR-TOF Astrophysics < 10-7 10 10 - separation of isomers Weak interaction studies ≤ **10**-8 1 1 Penning Metrology - fundamental traps ₿ constants < 10-9 01 0.1 Neutrino physics CPT tests < 10⁻¹⁰ 0.01 0.01 QED in highly-charged ions $\leq 10^{-11}$ 0.001 0.001 - separation of atomic states

UNIVERSITY OF JYVÄSKYLÄ

Nuclear structure via mass measurements

Trap-assisted decay spectroscopy

Low-energy Ge array (U-Warsaw) @JYFLTRAP

energy [keV]

- Focus of decay spectroscopy region at IGISOL on studies of evolution of coexisting shapes around A=100-120
- Monoisotopic beam of ¹¹¹Mo delivered for post-trap decay spectroscopy

J. Kurpeta et al., Phys. Rev. C 84 (2011) 044304

Proton-emission branching with TASISpec

- Revisiting ^{53m}Co 50 years after the discovery of proton radioactivity
- TASISpec: DSSD array with Cluster and 2 Clover detectors
- Complementary studies with ACTAR TPC, LISE 3 @GANIL

Other post-trap detectors:

- DTAS (total absorption decay spectroscopy)
- BELEN for delayed neutrons
- MONSTER...

~60% of JYFLTRAP experiments are for spectroscopy-related proposals

Post-trap spectroscopy at DESIR & in-trap spectroscopy

L.G. Sarmiento et al., to be submitted

Nuclear fingerprint on atomic spectra

I.D. Moore, Colloque GANIL, 28 Sept. 2021

JYU. Since 1863.

Isotope shifts of electronic transitions

What can the nuclear charge radii tell us?

 $\delta < r^2 > {}^{50,A}$ (fm²)

Charge radii systematics

I.D. Moore, Colloque GANIL, 28 Sept. 2021

JYU. Since 1863.

Laser spectroscopy towards the N=Z line

Current status of masses below ¹⁰⁰Sn

- Penning trap, storage ring and MR-TOF devices used
- Generally, large shifts in the mass surface in A=80-90 region for N=Z+1 → validity of extrapolation to N=Z?
- Significant discrepancies between Penning traps and IMS (CSRe)

M. Vilen et al., PRC 100 (2019) 054333

- FRS Ion Catcher, GSI, MR-TOF, ⁹⁷Ag
 discovery of long-lived (1/2⁻) isomeric state
 C. Hornung et al., *PLB 802 (2020) 135200*
- FRS Ion Catcher, GSI, MR-TOF, ⁹³Pd
 connected to ⁹⁴Ag via 1-p decay
- JYFLTRAP, ^{95,96g,m}Ag (2021)
- ISOLTRAP, ^{99-101g,m}In

- amplifies discrepancy in existing $\beta\text{-decay}\,Q$ values used to derive the mass of ^{100}Sn

M. Mougeot et al., Nature Phys. (2021) https://doi.org/10.1038/s41567-021-01326-9

• LEBIT, ⁸⁰Zr

- compelling evidence for deformed shell closure

Courtesy of W. Plass & C. Hornung (updated last week)

arXiv:2108.13419v1 (30 Aug. 2021)

Spin-gap isomers below ¹⁰⁰Sn

T. Faestermann et al., PPNP 69 (2013) 85

Nucleon-Nucleon interactions

- Effective single particle energy levels (¹⁰¹Sn, ⁹⁹In)
- T=0 T=1 pairing interaction (⁹⁸In)
- Spin-aligned coupling scheme (⁹⁴Ag, ⁹⁰Rh)

Comprehensive set of Q_{β} , $T_{1/2}$, $b_{\beta p}$ and γ data for p-rich nuclei 43 \leq N, Z \leq 51 from RIKEN.

JYU. Since 1863.

I.D. Moore, Colloque GANIL, 28 Sept. 2021

~15 years of developments for Ag at IGISOL

An inductively-heated hot cavity catcher laser ion source at IGISOL

- GSI work (Kirchner) Ag has excellent extraction from graphite
- In collaboration with ECR team, a new inductively-heated cavity source*
- Tested online, confirming \sim 1% total efficiency for Ag
- Three-step resonance laser ionization and spectroscopy

Note: IPHC Strasbourg development of inductive micro-oven for GANIL ECR sources

*M. Reponen et al., Rev. Sci. Instrum 86 (2015) 123501

Penning trap-assisted in-source RIS

An inductively-heated hot cavity catcher laser ion source at IGISOL

Penning trap-assisted in-source RIS

An inductively-heated hot cavity catcher laser ion source at IGISOL

UNIVERSITY OF JYVÄSKYLÄ

Evolution of charge radii near ¹⁰⁰Sn

Article | Open Access | Published: 28 July 2021

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

M. Reponen 🖂, R. P. de Groote, [...]I. D. Moore

Nature Communications 12, Article number: 4596 (2021) Cite this article

- New measurements cross N=50 shell closure in the region of ¹⁰⁰Sn
- UNEDF functionals predict a rather smooth behaviour; Fayans EDF better reproduces local variations
- None of the models reproduces the pronounced increase in crossing N=50
- Fayans functional also applied to recent Pd charge radii data; exploration of the strength of pairing correlations (publication to be submitted)

Outlook for PI-ICR-assisted RIS at IGISOL

- Ca beam intensity 40-50 pnA (average)
- Repeated ⁹⁶Ag: maximum rate 0.04/s
- Charge radius and dipole moment of ⁹⁵Ag extracted
- Mass measurements of ^{95,96,96m}Ag
- Tentative signs for (7⁺) isomer in ⁹⁴Ag

- LISE++ simulations and Gemini++ cross sections
- Assume 0.5% efficiency after mass separation, 10% transmission RFQ and trap
- Laser ionization efficiency ~10%
- ⁴⁰Ca or ⁵⁸Ni primary beam, 50 pnA
- Similar statistics as for ⁹⁶Ag (0.005 ions/s) in <12h

Possibilities for S³-LEB

	Rates Hz	S3	S3-LEB
N=Z	¹⁰⁰ Sn	7	0,6
	¹⁰¹ Sn	170	14
N=Z	⁹⁸ In	2.6	0,13 (Iso)
	⁹⁹ In	80	7,5
	¹⁰⁰ In	740	36
	⁹⁸ Cd	3600	352
	⁹⁷ Cd	19	1,6
N=Z	⁹⁶ Cd	4	0,25 (gs) / 0,06 (iso)
N=Z	⁹⁴ Ag	680	0,01 (gs) / 35 (7+) / 1 (21+)
	⁹⁵ Ag	870	77
N=Z	⁹² Pd	810	67
N=Z	⁸⁰ Zr	1300	124

Maximum production rates given for existing SPIRAL2 injector (A/q = 3)

Primary beam intensity will depend on target capabilities

NEWGAIN injector project (A/q=7) will boost these rates by *5-10

Y. Kudryavtsev et al., NIMB 376 (2016) 345

- Provide pure & low energy beams from S³
- Spectroscopy with only 0,1 pps
- Perform medium-resolution laser spectroscopy 100-300 MHz & Eff > 10%
- MR-TOF-MS, >20-keV precision

Exploring p-rich nuclei between ⁴⁰Ca and ⁵⁶Ni

Why is this region interesting?

Exploring proton-neutron pairing correlations

- Odd-odd self-conjugate nuclei provide an ideal testing ground for proton-neutron pairing studies
- Charge radius will be greater for a state with I=0, T=1 than for such a state with I≠0, T=0
- ²⁶Al (5⁺ ground state, 0⁺ isomer) measured at IGISOL in 2021.

More widely, isospin-related studies are of particular interest at and past the N=Z line (@DESIR): Eg. breakdown of isospin symmetry (IMME via masses), the origin of the Wigner energy, pairing condensates...

Summary

- I hope to have given a flavor of the physics opportunities and current topical interests with a focus along the N=Z line (although much has yet to be studied along the way to N=Z!!)
- Laser spectroscopy and mass spectrometry nowadays are fruitfully combined to provide a wealth of complementary nuclear structure
- Trap-assisted spectroscopy is an extremely powerful tool and (personally) I think is the future direction for facilities hosting traps and decay stations
- S3 and DESIR are very complementary with unique opportunities/strengths
- To take advantage of the beams and intensities available, a fast gas cell needs to be developed
- Not discussed: actinides, the high-precision frontier (octupole moments, hyperfine anomalies...), weak interaction studies (CVC, exotic currents, triple correlations...), in-trap decay studies...
- Future opportunities with MNT reactions, fission fragments...?

Acknowledgements

The IGISOL group, circa late 2019

Several wonderful (local & nonlocal) people for material and patient explanations:

Herve Savajols, Nathalie Lecense, Lucia Caceres, Pauline Ascher, Pierre Delahaye, Vladimir Manea, Magda Gorska, Agi Koszorus, Ruben de Groote, Mikael Reponen, C. Hornung

Thanks for your "online" attention!