

Colloque GANIL 2021

Université

de Strasbourg

Dubna

New isomeric states in ²⁵⁵No and ²⁵⁶No with GABRIELA@SHELS

PhD supervisor : Benoit Gall Kieran Kessaci

Kessaci Kieran - Colloque GANIL 2021 - 24/09/2021

I. Context

- Spectroscopy around ²⁵⁴No
- Experimental setup
- II. Data analysis and results
 - $^{22}Ne + ^{238}U \rightarrow ^{256}No + 4n$
 - ${}^{48}Ca + {}^{208}Pb \rightarrow {}^{255}No + n$

Spectroscopy Around ²⁵⁴No

٠

Ch. Theisen et al. / Nuclear Physics A 944 (2015) 333-375

Chart of known excited states in the heavy and superheavy region

Université

de Strasbourg

- The region around $^{254}_{102}No$ was widely studied by cold fusion
- Many rotational structures and high-K isomers were observed
- Informations on neutron rich isotopes are scarce

²⁵⁶No in hot fusion : ${}^{22}_{10}Ne + {}^{238}_{92}U \rightarrow {}^{256}_{102}No + 4n$

• ²⁵⁵No in cold fusion : ${}^{48}_{20}Ca + {}^{208}_{82}Pb \rightarrow {}^{255}_{102}No + n$

Setup

SHELS : Separator for Heavy Elements Spectroscopy

Reaction	ERs transmission	
	Old	New
²² Ne(¹⁹⁸ Pt,5-7n) ²¹³⁻²¹⁵ Ra	0.03	0.040 ± 0.015
²² Ne(¹⁹⁷ Au,4-6n) ²¹³⁻²¹⁵ Ac	0.03	0.065 ± 0.030

A. G. Popeko et al, Nuclear Instruments and Methods in Physics Research B 376 (2016) 140–143

• $^{22}_{10}Ne + ^{238}_{92}U \rightarrow ^{260-x}_{102}No + xn$ \rightarrow First asymmetric experiment with this setup

GABRIELA : Gamma Alpha Beta Recoil Investigations with the ELectromagnetic Analyzer

- DSSD + Tunnels + 4 Ge Monocrystals + 1 CLOVER
- One of the ToF foils was unmounted because of the slowness of the recoils
 - \rightarrow High DSSD threshold (150-200 keV)

Kessaci Kieran - Colloque GANIL 2021 - 24/09/2021

A. Yeremin, O. Malyshev and al. - EPJ Web of Conferences 86, 00065 (2015)

I. Context

- Spectroscopy around ²⁵⁴No
- Experimental setup

II. Data analysis and results

- ${}^{22}Ne + {}^{238}U \rightarrow {}^{256}No + 4n$
- ${}^{48}Ca + {}^{208}Pb \rightarrow {}^{255}No + n$

 $^{22}Ne + ^{238}U \rightarrow ^{256}No + 4n$

1 ms

9000

0

• This plot shows the lifetime of isomers as a function of the subsequent alpha decay energy

Recoil-Elec Time vs Energy Alpha

7600

7800

8000

8200

8400

- ²⁵⁶No Alpha decay energy 8430 keV (M. Asai et al.)
- 8430 keV : 15 events of a new isomer in ²⁵⁶No
- Between 7700 and 8150 keV : isomeric decays in ²⁵⁵No

8600

8800

Energy Alpha (keV)

 $^{22}Ne + ^{238}U \rightarrow ^{256}No + 4n$

Isomer

• This plot shows the lifetime of isomers as a function of the subsequent alpha decay energy

Mother

- ²⁵⁶No Alpha decay energy 8430 keV (M. Asai et al.)
- 8430 keV : 15 events of a new isomer in ²⁵⁶No
- Between 7700 and 8150 keV : isomeric decays in ²⁵⁵No

M. Asai et al., JAEA-Review 2016-025 (2016) pp. 9-10.

Kessaci Kieran - Colloque GANIL 2021 - 24/09/2021

Daughter

²⁵⁶No Isomeric state(s)

 $T_{1/2} = 7,8^{+2,7}_{-1,6}$ µs

- 15 events over one month of beam-time (identified by the calorimetric method of G.D.Jones)
- 738 ²⁵⁶No implanted in the focal plane \rightarrow Isomeric ratio 15/738 \simeq 4%

• 9 events without pile-up -

- K and L X-rays of Nobelium observed
 - \rightarrow Conversion electrons
- γ rays considered with and without add-back mode for the CLOVER detector

 \rightarrow E*>1089keV

DSSD energy	Tunnel energy	γ -ray energy	Sum
(keV)	(keV)	(keV)	(keV)
187	-	-	187
254	101	27	382
421	63	-	484
518	121	-	639
318	211	463 ^{AB}	992
576	91	127 // 205	999
589	189	255	1033
604	462	23	1089
809^{PU}	86	133	-
999^{PU}	139	127	-
1063^{PU}	227	372 ^{AB}	-
1131^{PU}	-	307	-
1154^{PU}	28	382	-
1768^{PU}	-	0	-

Université

²⁵⁶No Isomeric state(s)

- 15 events over one month of beam-time (identified by the calorimetric method of G.D.Jones)
- 738 ²⁵⁶No implanted in the focal plane \rightarrow Isomeric ratio 15/738 \simeq 4%
- 9 events without pile-up -
- K and L X-rays of Nobelium observed
 - \rightarrow Conversion electrons
- γ rays considered with and without add-back mode for the CLOVER detector

```
\rightarrow E*>1089keV
```

DSSD energy	Tunnel energy	γ -ray energy	Sum
(keV)	(keV)	(keV)	(keV)
187	-	-	187
254	101	27	382
421	63	-	484
518	121	-	639
318	211	463 ^{AB}	992
576	91	127 // 205	999
589	189	255	1033
604	462	23	1089
809^{PU}	86	133	-
999^{PU}	139	127	-
1063^{PU}	227	372 ^{AB}	-
1131 ^{PU}	-	307	-
1154^{PU}	28	382	-
1768^{PU}	-	0	-

Université

²⁵⁶No Isomeric state(s)

Université

de Strasbourg

Inputs :

- $T_{1/2} = 7,8^{+8,3}_{-2,7}$ µs
- Isomeric ratio $\simeq 4\%$
- Excitation energy > 1089keV
- Electron shower up to $\simeq 600 \text{keV}$ in the decay

High-*K*, $t_{1/2} = 7.8^{+9.0}_{-2.7} \mu s$ isomeric state in ${}^{256}_{102}$ No₁₅₄

K. Kessaci^{a,*}, B.JP. Gall^a, O. Dorvaux^a, A. Lopez-Martens^b, D. Ackermann^d, R. Chakma^b, M.L. Chelnokov^c, V.I. Chepigin^c, M. Forge^a, K. Hauschild^b, A.V. Isaev^c, I.N. Izosimov^c, D.E. Katrasev^c, A.A. Kuznetsova^c, O.N. Malyshev^c, J. Piot^d, A.G. Popeko^c, Yu.A. Popov^c, E.A. Sokol^c, A.I. Svirikhin^c, A.V. Yeremin^c

^a Université de Strasbourg, CNRS, IPHC UMR 7178, 67037 Strasbourg, France ^bIJCLab, IN2P3-CNRS, Université Paris Saclay, 91400 Orsay, France ^cFlerov Laboratory of Nuclear Reactions, JINR, 141 980 Dubna, Russia ^dGANIL, CEA/DSM-CNRS/IN2P3, Caen, France

ccepted in PR(

Abstract

Isomeric states in ²⁵⁶No were investigated using internal conversion electron and γ -ray spectroscopy with GABRIELA at the focal plane of the the SHELS recoil separator. The nuclei of interest were produced using the hot fusion-evaporation reaction ²³⁸U(²²Ne, 4n)²⁵⁶No. The emission of internal conversion electrons and γ -rays occurring between a ²⁵⁶No implantation and a subsequent alpha decay event were studied, resulting in the observation an isomer with an half life of $7.8^{+9.0}_{-3.7} \mu$ s. It is interpreted on the basis of experimental information from internal conversion electron and γ -ray spectra as well as lifetimes and hindrance in the

Solutions for the observed isomer :

- A 4-qp configuration ?
 - \rightarrow Ratio
 - \rightarrow Electron burst energy
 - ...But why no 2-qp?
 - ...2-qp configuration below threshold ?
- 2 different 2-qp configurations ?
 - \rightarrow Lifetime distribution
 - \rightarrow long unfavored path // to a short
 - **?** favored below threshold ?
 - \rightarrow Most likely configuration(s) : 2-qp neutron

Require new experiment with :

- Lower thresholds
- > Digital electronic ?

I. Context

- Spectroscopy around ²⁵⁴No
- Experimental setup

II. Data analysis and results

- $^{22}Ne + ^{238}U \rightarrow ^{256}No + 4n$
- ${}^{48}Ca + {}^{208}Pb \rightarrow {}^{255}No + n$

²⁵⁵No Isomeric states

• New results from the cold-fusion experiment

 ${}^{48}Ca + {}^{208}Pb \rightarrow {}^{256-x}No + xn$

- First issue :
 - ²⁵⁴No and ²⁵⁵No have common alpha decay energies and common lifetime for the first isomers..
 - How can we distinguish these isomers ?
 - \rightarrow Look at the chains up to ²⁵¹Fm to clean the data \rightarrow Identification
 - \rightarrow Then isolate it by correlations between fist decays \rightarrow Study

Well known $^{251}Fm \rightarrow$ Identification of the decay chain

Well known $^{251}Fm \rightarrow$ Identification of the decay chain

²⁵⁵No: 4 Isomeric states

- 60 events
- Too scarce statistics in coincident gamma spectrum to conclude on their configuration

²⁵⁵No: Cascades of 3 isomers

Université de Strasbourg Measured properties : $T_{1/2}^{4th} = 5 \pm 1 \ \mu s$ E_{DSSD}: Pile-up default $E_{tot}^* > 2430 \text{ keV}$ $T_{1/2}^{3rd} = 92 \pm 13 \ \mu s$ $E_{\text{DSSD}} \ge 130$ $E_{tot}^* \ge 1430 \text{ keV}$ $T_{1/2}^{2nd} = 2 \pm 1 \ \mu s$ $E_{\text{DSSD}} \geq 400$ $E_{tot}^* \ge 1230 \text{ keV}$ $T_{1/2}^{1st} = 86 \pm 8 \ \mu s$

 $E_{DSSD} \ge 225 \text{ keV}$ $E_{tot}^* \ge 225 \text{ keV}$

²⁵⁵No: Interpretation

Université

de Strasbourg

In perfect agreement with N=153 isotones

 $\sim 90 - (1/2^+)$

²⁵⁵No: Interpretation

Université

1-qp 11/2- excitation In perfect agreement with N=153 isotones

Summary

- First spectroscopic studies of ²⁵⁵No and ²⁵⁶No
- 4 isomeric states identified in ²⁵⁵No
- $^{22}Ne + ^{238}U \rightarrow ^{256}No + 4n$ will be repeated with :
 - Digital electronic
 - Lower conversion electrons thresholds (<100 keV)
 - Higher intensities
 - Upgraded SHELS
- Upgrade of SHELS
 - \rightarrow Entrance quadrupole-triplet upgraded
 - \rightarrow Increased transmission especially for the very asymmetric reactions
- SHEXI project (international ANR)
 Super Heavy Elements X-rays Identification
 → Increased X-rays / CE detection efficiency

Université

Summary

- First spectroscopic studies of ²⁵⁵No and ²⁵⁶No
- 4 isomeric states identified in ²⁵⁵No
- $^{22}Ne + ^{238}U \rightarrow ^{256}No + 4n$ will be repeated with :
 - Digital electronic
 - Lower conversion electrons thresholds (<100 keV)
 - Higher intensities
 - Upgraded SHELS
- Upgrade of SHELS
 - \rightarrow Entrance quadrupole-triplet upgraded
 - \rightarrow Increased transmission especially for the very asymmetric reactions
- SHEXI project (international ANR)
 Super Heavy Elements X-rays Identification
 → Increased X-rays / CE detection efficiency

Université

Collaborators :

- IN2P3 : B. J. P. Gall, A. Lopez-Martens, O. Dorvaux, K. Hauschild, M. Forge, R. Chakma, Z. Asfari
- GANIL : J. Piot
- FLNR: A. V. Yeremin, M. L. Chelnokov, V. I. Chepigin, A. V. Isaev, O. N. Malyshev, A. G. Popeko, Y. A. Popov, A. A. Kuznetsova, A. I. Svirikhin, E. A. Sokol, M. S. Tezekbayeva, R. Mukhin
- Chinese Academy of Science : B. Ding, Z.Liu, F. Zhang

Thank you

Université

Calibration

- Clock of the acquisition system 1µs
- Charge collection time up to 7-8µs
 - \rightarrow Pilup effects for very fast decays
- The electron signal may be piled on the tail of the implantation signal leading to an apparent higher energy.
- An energy correction process could be applied in a time range between log2(ΔT [µs]) = 9 and 3
- Impossible to correct this effect below 2³ µs

	< 8 µs	≥ 8 µs
Energy		
Time		

Kessaci Kieran - Colloque GANIL 2021 - 24/09/2021

- Through the decay of ²⁵⁵No we can see the X-rays of ²⁵¹Fm
- These results are in perfect agreement with the study from M. Asai (2011) [9] or K. Rezynkina (2018) [12]

FIG. 2. A simplified level scheme depicting the observed transitions in 251 Fm populated in α decay of 255 No.

[9] M. Asai, K. Tsukada, H. Haba and al. - PHYSICAL REVIEW C 83, 014315 (2011) [12] K. Rezynkina, A. Lopez-Martens, K. Hauschild and al. - PRC 97, 054332 (2018)

Experiment

Experimental Conditions

 $^{22}Ne + ^{238}U \rightarrow ^{260-x}No + xn$

- Hot Fusion
- ²⁵⁵No and ²⁵⁶No produced
- April 2019
- 3 weeks of beamtime
- ²³⁸U(M) Target (99,99%)
- ²²Ne Beam
- Intensity between 0.6 and 1.0 pµA
- Beam Energy 107-112 MeV

⁴⁸Ca + ²⁰⁸Pb→^{256-x}No + xn

Cold Fusion

- ²⁵⁴No and ²⁵⁵No produced
- November/December 2019
- 4 weeks of beamtime
- ²⁰⁸Pb Target (99,99% pure)
- ⁴⁸Ca Beam
- Intensity between 0.4 and 0.5 pµA
- Beam Energy 225 MeV

Université

