Understanding elemental anomalies in Globular Clusters:
Experimental study of the $^{30}\text{Si}(p,\gamma)^{31}\text{P}$ reaction

Djamila Sarah HARROUZ

Supervisors:
Nicolas de Séréville
Faïrouz Hammache
Globular Clusters

- Gravitationally bound systems of 10^5 to 10^7 stars, located in halo of spiral galaxies.

- Among the oldest structures in the Universe (age > 10 Gyr).

- Globular Clusters are important for:
 - Cosmology (age of the Universe)
 - Galactic physics (formation and early evolution of galaxies)

- Low mass stars mainly on the Main Sequence and Red Giant branch.
 → Hydrogen-burning

- Paradigm: Single stellar population: same age and chemical composition.
Abundance anomalies in Globular Clusters

- Spectroscopic observations in Red Giant stars:
 - Abundance anticorrelation for C-N, O-Na, Mg-Al
 - Abundances vary from star-to-star
 - Red giant stars temperature too low to alter abundances
 → Abundances partially inherited from unknown stars from previous generation, called polluters.

Polluters must burn Hydrogen at $T \sim 75$ MK (Prantzos et al. 2007 & 2017)

Extreme case of NGC2419
- Observed Mg-K anticorrelation
- Requires much higher temperature in polluter site (between 100 MK and 200 MK) to overcome Coulomb barrier in proton capture reactions.

What is the nature and type of polluter stars? (T, ρ)?
NGC2419 Abundances

Key Reactions
- Individual variation of reaction rates within their uncertainties.
- Impact of a few (p,γ) reactions.
- $^{30}\text{Si}(p,\gamma)^{31}\text{P}$ reaction contributes the most to the spread of the (T, ρ) locus for $100 \text{ MK} < T < 200 \text{ MK}$

Sensitivity Studies
- Simulate nucleosynthesis reaction network in **H-burning conditions** (with Monte Carlo calculation) for uniform T and ρ distributions, and varying reaction rates within uncertainties.
- Uncertainty on reaction rates $\rightarrow T$ spread increased by 70%.
State of the art for $^{30}\text{Si}(p,\gamma)^{31}\text{P}$ reaction

- Energies known with uncertainty better than 4 keV
- Spins and parities constrained but mostly unknown

\begin{itemize}
 \item $E_r = 19$ keV: $C^2S = 0.002$ \textit{(Vernotte et al. 1990)}
 \item $E_r = 51$ and 146 keV: Mean reduced widths, systematic study $\langle \theta^2 \rangle = 0.0003$
 \item $E_r = 171$ keV: Upper limit $C^2S < 0.003$ \textit{(Dermigny et al. 2020)}

 \item $E_r = 422$, 486 keV sole direct measurements using $\gamma\gamma$ coincidences \textit{(Dermigny et al. 2020)}
 \item $E_r = 603$ keV: several direct measurements, reference resonance
\end{itemize}
Experimental Strategy

Thermonuclear reaction rate for single and isolated narrow resonance:

\[
\langle \sigma v \rangle \propto (\omega \gamma) e^{-E_{R}/kT}
\]

\[
\omega \gamma = \frac{2J_{R} + 1}{(2J_{p} + 1)(2J_{30}S_{i} + 1)} \frac{\Gamma_{p}\Gamma_{\gamma}}{\Gamma}
\]

High energy

- Direct measurement of resonance strength \(\omega \gamma\)
 - @DRAGON (Triumf)
- Independent strength determination of the 484 keV resonance.

Low energy

\[
\begin{aligned}
\Gamma &= \Gamma_{p} + \Gamma_{\gamma} \\
\Gamma_{p} &\ll \Gamma_{\gamma}
\end{aligned}
\]

\[
\omega \gamma \approx \omega \Gamma_{p}
\]

\(^{30}\text{Si}(^{3}\text{He},d)^{31}\text{P}\) transfer reaction

- Experiment by Vernotte in 1990 at Orsay’s SplitPole: low statistics, limited resolution and contaminations.
- → new measurements @Q3D (MLL) with improved energy resolution and sensitivity.
One proton Transfer Reaction

(p,γ) can be studied through one proton (³He,d) transfer reaction

Experimental method

Theoretical model for direct transfer

Distorted Wave Born Approximation:
- Elastic scattering dominates entrance and exit channels (described by optical models)
- Transfer 1ˢᵗ order perturbation
- No configuration rearrangement

• Excitation energies
• Angular distribution

\[
\frac{d\sigma}{d\Omega}(\theta)_{\text{exp}} = C^2 S \frac{d\sigma}{d\Omega}(\theta)_{DWBA}
\]

\[
\Gamma_p = C^2 S \; \Gamma_{p}^{s.p}(E_r, \ell)
\]

Shape of the distribution
→ transferred angular orbital momentum \(\ell\)
$^{30}\text{Si}(^3\text{He},d)^{31}\text{P}$ reaction
@Q3D

- **Beam ^3He**: $E = 25$ MeV, $I = 200\text{nAe}$
- **Targets**: $^{30}\text{SiO}_2$ (40 μg/cm2) enriched at 95% on natC
 $^{\text{nat}}\text{SiO}_2$ (20 μg/cm2) on natC
- **Solid Angle**: 4 to 12 msr
- **Energy resolution**: $\frac{\Delta E}{E} \sim 2 \times 10^{-4}$

Focal plane detectors:

- Single-wire proportional counters → position on the focal plane and energy loss.
- Plastic scintillator → residual energy.
• Spectra for 7 lab angles: 6°, 10°, 12°, 16°, 20°, 23°, 32°

• Fit with multiple skewed gaussians with common width.

• Experimental resolution FWHM ~ 7 keV
 Vernotte (1990) ~25 keV

• Doublet at $E_x = 7719 - 7737$ keV separated.

$\theta_{Q3D} = 20^\circ$
Doublet at $E_x = 7719 - 7737$ keV separated.

Levels at $E_x = 7446$ and 7470 keV observed for $\theta_{Q3D} \geq 20^\circ$.
Angular distributions

Differential cross section

\[\frac{d\sigma}{d\Omega}(\theta_{c.m.})_{exp} = \frac{N_d(\theta_{c.m.})}{N_{beam}N_{target}\Delta\Omega_{c.m.}} = C^2S \frac{d\sigma}{d\Omega}(\theta_{c.m.})_{DWBA} \]

Finite-Range DWBA calculations
→ performed with FRESCO code.

Optical potentials

- 30Si + 3He: Vernotte et al (1982)
- 31P + d : Daehnick, (1980)

Binding Potentials

- 30Si + p: Wood-Saxon, volume + Spin-Orbit
- $<^{3}\text{He}|d+p>$ overlap: GFMC Brida (2011)

→ C^2S extrapolated to correct unbound energy

\[\Gamma_p \propto C^2S \mid R(r) \mid^2 \quad r = 7\text{ fm} \]

Radial wave-function calculation
→ performed with DWUCK4 code

Vincent & Fortune (1970) procedure

- Γ_p uncertainties ~ 30% (from optical pot.)

\[\theta_{c.m.} \]
\^30\text{Si}(p,\gamma)^{31}\text{P Reaction Rate}

- Monte Carlo calculations using \textit{RatesMC}.
- 68% uncertainty bands (log-normal distribution)

- Determination of C\(^2\)S for \(E_r = 19\) keV, \(E_r = 51\) keV and \(E_r = 170\) keV (previously upper limits)
- Monte Carlo calculations using RatesMC.
- 68% uncertainty bands (log-normal distribution)

- Determination of C^2S for $E_r = 19$ keV, $E_r = 51$ keV and $E_r = 170$ keV (previously upper limits)
- Observation of the $E_r = 149$ keV \rightarrow key resonance in $T = 100$-200 MK
\(^{30}\text{Si}(p,\gamma)^{31}\text{P} \) Reaction Rate

- Monte Carlo calculations using \textit{RatesMC}.
- 68\% uncertainty bands (log-normal distribution)

- Determination of \(C^2S \) for \(E_r = 19 \text{ keV}, E_r = 51 \text{ keV} \) and \(E_r = 170 \text{ keV} \) (previously upper limits)
- Observation of the \(E_r = 149 \text{ keV} \) → \textit{key resonance} in \(T = 100-200 \text{ MK} \)
 → \(\ell = 2 \) or \(\ell = 3 \), induces a factor of 10 difference in the reaction rate
 → \textit{spin/parity} have to be better constrained!
Monte Carlo calculations using RatesMC.

68% uncertainty bands (log-normal distribution)

Determination of C^2S for $E_r = 19$ keV, $E_r = 51$ keV and $E_r = 170$ keV (previously upper limits)

Observation of the $E_r = 149$ keV → key resonance in $T = 100$-200 MK

$\rightarrow \ell = 2$ or $\ell = 3$, induces a factor of 10 difference in the reaction rate

\rightarrow spin/parity have to be better constrained!

$E_r = 418 - 440$ keV doublet resolved → $E_r = 418$ keV has $\ell = 3$, negligible contribution to the reaction rate, in agreement with direct measurements (Derigny et al. 2020)

$E_r = 486$ keV: good agreement for strength values (within 30%) with direct measurements.
Conclusion

- Extraction of spectroscopic information for the 31P nucleus between $E_x = 6800 – 8100$ keV from the 30Si(3He,d)31P reaction.
- Calculation of strengths for resonances up to $E_r = 600$ keV.
- Improved determination of the 30Si(p,γ)31P reaction rate.
- Evincing the importance of key resonance at $E_r = 149$ keV → need to determine its spin/parity

Harrouz et al. (submitted to PRC 2021)
Conclusion

- Extraction of spectroscopic information for the 31P nucleus between $E_x = 6800 – 8100$ keV from the 30Si(3He,d)31P reaction.
- Calculation of strengths for resonances up to $E_r = 600$ keV.
- Improved determination of the 30Si(p,γ)31P reaction rate.
- Evincing the importance of key resonance at $E_r = 149$ keV \rightarrow need to determine its spin/parity

Perspectives

- Analysis of the 30Si(p,γ)31P reaction rate with the Recoil spectrometer DRAGON

![Graph showing data](image)

$E_{c.m.} = 602$ keV

<table>
<thead>
<tr>
<th>hist_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entries</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Std Dev</td>
</tr>
</tbody>
</table>

Preliminary Work
Conclusion

- Extraction of spectroscopic information for the 31P nucleus between $E_x = 6800 – 8100$ keV from the 30Si(3He,d)31P reaction.
- Calculation of strengths for resonances up to $E_r = 600$ keV.
- Improved determination of the 30Si(p,γ)31P reaction rate.
- Evincing the importance of key resonance at $E_r = 149$ keV → need to determine its spin/parity

Perspectives

- Analysis of the 30Si(p,γ)31P reaction rate with the Recoil spectrometer DRAGON
- Investigate the impact of the new measurements on the temperature locus for constraining “the polluter” candidates in Globular Clusters.
Thank you for your attention

Collaborators:

Philip Adsley (iThemba)
Beyhan Bastin (GANIL)
Thomas Fastermann (TUM)
Faïrouz Hammache (IJCLab)
Ralf Hertenerberger (TUM)
Marco La Cognata (LNS)
Livio Lamia (LNS)
Richard Longlond (aNCSU / TUNL)
Anne Meyer (IJCLab)
Sara Palmerini (LNS)
Gianluca Pizzone (LNS)
Stefano Romano (LNS)
Nicolas de Séréville (IJCLab)
Aurora Tumino (LNS)
Hans-Friedrich Wirth (TUM)