Understanding elemental anomalies in Globular Clusters: Experimental study of the ³⁰Si(p,γ)³¹P reaction

Djamila Sarah HARROUZ

Supervisors: Nicolas de Séréville Faïrouz Hammache

XXIInd Colloque Ganil 28th septembre 2021

Laboratoire de Physique des 2 Infinis

Globular Clusters

- Gravitationally bound systems of 10⁵ to 10⁷ stars, located in halo of spiral galaxies.
- Among the oldest structures in the Universe (age > 10 Gyr).
- Globular Clusters are important for:
 - Cosmology (age of the Universe)
 - Galactic physics (formation and early evolution of galaxies)
- Low mass stars mainly on the Main Sequence and Red Giant branch.
 - $\rightarrow \text{Hydrogen-burning}$
- Paradigm: **Single stellar population**: same age and chemical composition.

Abundance anomalies in Globular Clusters

- Spectroscopic observations in Red Giant stars:
 - Abundance anticorrelation for C-N, O-Na, Mg-Al
 - Abundances vary from star-to-star
- Red giant stars temperature too low to alter abundances

 \rightarrow Abundances partially inherited from unknown stars from previous generation, called polluters.

Polluters must burn Hydrogen at T ~ 75 MK (Prantzos *et al.* 2007 & 2017)

Extreme case of NGC2419

- Observed **Mg-K** anticorrelation
- Requires much higher temperature in polluter site (between 100 MK and 200 MK) to overcome Coulomb barrier in proton capture reactions.

[Na/Fe] 5.0

-0.5

NGC5904

C

[O/Fe]

What is the nature and type of polluter stars? (Τ,ρ)?

C

arretta

NGC2419 Abundances

Sensitivity Studies

- Simulate nucleosynthesis reaction network in H-burning conditions (with Monte Carlo calculation) for uniform T and ρ distributions, and varying reaction rates within uncertainties.
- Uncertainty on reaction rates → T spread increased by 70%.

- Individual variation of reaction rates within their uncertainties.
- Impact of a few (p,γ) reactions.
- ³⁰Si(p,γ)³¹P reaction contributes the most to the spread of the (T, ρ) locus for 100 MK < T < 200 MK

State of the art for ³⁰Si(p,γ)³¹P reaction

- E_r= 19 keV: C²S = 0.002 (Vernotte et al. 1990)
- E_r= 51 and 146 keV: Mean reduced widths, systematic study $\langle \theta^2 \rangle = 0.0003$
- E_r= 171 keV: Upper limit C²S < 0.003 (Dermigny et al. 2020)
- E_r= 422, 486 keV sole direct measurements using γγ coincidences (Dermigny et al. 2020)
- E = 603 keV: several direct measurements, reference resonance

Experimental Strategy

energy resolution and sensitivity.

6

One proton Transfer Reaction

 (p,γ) can be studied through one proton (³He,d) transfer reaction

Experimental method

Theoretical model for direct transfer

Distorted Wave Born Approximation:

- Elastic scattering dominates entrance and exit channels (described by optical models)
- Transfer 1st order perturbation
- No configuration rearrangement

- Excitation energies
- Angular distribution

$$\frac{d\sigma}{d\Omega}(\theta)_{exp} = C^2 S \frac{d\sigma}{d\Omega}(\theta)_{DWBA}$$
$$\Gamma_p = C^2 S \Gamma_p^{s.p}(E_r, \ell)$$

Shape of the distribution → transferred angular orbital momentum ℓ

- Targets: ³⁰SiO₂ (40 µg/cm²) enriched at 95% on ^{nat}C ^{nat}SiO₂ (20 µg/cm²) on ^{nat}C
- Solid Angle : 4 to 12 msr
- > Energy resolution $\frac{\Delta E}{E} \sim 2.10^{-4}$

Focal plane detectors :

- Single-wire proportional counters→ position on the focal plane and energy loss.
- Plastic scintillator \rightarrow residual energy.

8

Magnetic rigidity spectrum

- Spectra for 7 lab angles : 6°, 10°, 12°, 16°, 20°, 23°, 32°
- Fit with multiple skewed gaussians with common width.
- Experimental resolution FWHM ~ 7 keV Vernotte (1990) ~25 keV
- Doublet at E_x = 7719 7737 keV separated.

Magnetic rigidity spectrum

Angular distributions

Differential cross section

 $\frac{d\sigma}{d\Omega}(\theta_{c.m})_{exp} = \frac{N_d(\theta_{c.m})}{N_{beam}N_{target}\Delta\Omega_{c.m}} = C^2 S \frac{d\sigma}{d\Omega}(\theta_{c.m})_{DWBA}$

Finite-Range DWBA calculations

 \rightarrow performed with FRESCO code.

Optical potentials

³⁰Si + ³He: Vernotte et al (1982) ³¹P + d : Daehnick, (1980)

Binding Potentials

³⁰Si + p: Wood-Saxon, volume + Spin-Orbit <³He|d+p> overlap: GFMC Brida (2011)

 $\rightarrow C^2 S$ extrapolated to correct unbound energy

 $\Gamma_p \propto C^2 S \mid R(r) \mid^2 \qquad r = 7 fm$

Radial wave-function calculation

- → performed with **DWUCK4 code** Vincent & Fortune (1970) procedure
- Γ_p uncertainties ~ 30% (from optical pot.)

• Determination of C²S for $E_r = 19$ keV, $E_r = 51$ keV and $E_r = 170$ keV (previously upper limits)

- Determination of C²S for $E_r = 19$ keV, $E_r = 51$ keV and $E_r = 170$ keV (previously upper limits)
- Observation of the $E_r = 149 \text{ keV} \rightarrow \text{key resonance}$ in T = 100-200 MK

- Determination of C²S for $E_r = 19$ keV, $E_r = 51$ keV and $E_r = 170$ keV (previously upper limits)
- Observation of the $E_r = 149 \text{ keV} \rightarrow \text{ key resonance}$ in T = 100-200 MK
 - \rightarrow ℓ = 2 or ℓ = 3, induces a factor of 10 difference in the reaction rate
 - \rightarrow spin/parity have to be better constrained!

- Determination of C²S for $E_r = 19$ keV, $E_r = 51$ keV and $E_r = 170$ keV (previously upper limits)
- Observation of the E_r = 149 keV \rightarrow key resonance in T = 100-200 MK
- → l = 2 or l = 3, induces a factor of 10 difference in the reaction rate
 → spin/parity have to be better constrained!
- $E_r = 418 440$ keV doublet resolved $\rightarrow E_r = 418$ keV has $\ell=3$, negligible contribution to the reaction rate, in agreement with direct measurements (*Dermigny et al. 2020*)
- $E_r = 486$ keV: good agreement for strength values (within 30%) with direct measurements.

Conclusion

- Extraction of spectroscopic information for the ³¹P nucleus between $E_x = 6800 8100$ keV from the ³⁰Si(³He,d)³¹P reaction.
- Calculation of strengths for resonances up to $E_r = 600 \text{ keV}$.
- Improved determination of the ${}^{30}Si(p,\gamma){}^{31}P$ reaction rate.
- Evincing the importance of key resonance at $E_r = 149 \text{ keV} \rightarrow \text{need to determine}$ its spin/parity

Harrouz et al. (submitted to PRC 2021)

Conclusion

- Extraction of spectroscopic information for the ³¹P nucleus between $E_x = 6800 8100$ keV from the ³⁰Si(³He,d)³¹P reaction.
- Calculation of strengths for resonances up to $E_r = 600 \text{ keV}$.
- Improved determination of the ${}^{30}Si(p,\gamma){}^{31}P$ reaction rate.
- Evincing the importance of key resonance at $E_r = 149 \text{ keV} \rightarrow \text{need}$ to determine its spin/parity

Perspectives

 Analysis of the ³⁰Si(p,γ)³¹P reaction rate with the Recoil spectrometer **DRAGON**

Conclusion

- Extraction of spectroscopic information for the ³¹P nucleus between $E_x = 6800 8100$ keV from the ³⁰Si(³He,d)³¹P reaction.
- Calculation of strengths for resonances up to $E_r = 600 \text{ keV}$.
- Improved determination of the ${}^{30}Si(p,\gamma){}^{31}P$ reaction rate.
- Evincing the importance of key resonance at $E_r = 149 \text{ keV} \rightarrow \text{need}$ to determine its spin/parity

Perspectives

- Analysis of the ³⁰Si(p,γ)³¹P reaction rate with the Recoil spectrometer **DRAGON**
- Investigate the impact of the new measurements on the temperature locus for constraining "the polluter" candidates in **Globular Clusters.**

Thank you for your attention

Collaborators :

Philip Adsley (iThemba) Beyhan Bastin (GANIL) Thomas Fastermann (TUM) Faïrouz Hammache (IJCLab) Ralf Hertenberger (TUM) Marco La Cognata (LNS) Livio Lamia (LNS) Richard Longlond (aNCSU / TUNL) Anne Meyer (IJCLab) Sara Palmerini (LNS) Gianluca Pizzone (LNS) Stefano Romano (LNS) Nicolas de Séréville (IJCLab) Aurora Tumino (LNS) Hans-Friedrich Wirth (TUM)