Coulomb force as a magnifying glass of shell structure in the ${ }^{36} \mathrm{~S}-{ }^{36} \mathrm{Ca}$ mirror nuclei

UA'M
Universidad Autónoma de Madrid
L. Lalanne, $,{ }^{1,2},{ }^{*}$ O. Sorlin,,${ }^{2, \dagger}$ M. Assié, ${ }^{1}$ F. Hammache, ${ }^{1}$ N. de Séréville, ${ }^{1}$ S. Koyama, ${ }^{3,2}$ D. Suzuki, ${ }^{4}$ F. Flavigny, ${ }^{1,5}$ D. Beaume,,${ }^{1}$ Y Blumenfeld, ${ }^{1}$ B. A. Brown, ${ }^{6}$ F. De Oliveira Santos, ${ }^{2}$ F. Delaunay, ${ }^{5}$ S. Franchoo, ${ }^{1}$ J. Gibelin, ${ }^{5}$
V. Girard-Alcindor, ${ }^{2}$ J. Guillot, ${ }^{1}$ O. Kamalou ${ }^{2}$ N. Kitamura, ${ }^{7}$ V. Lapoux, ${ }^{8}$ A. Lemasson, ${ }^{2}$ A. Matta, ${ }^{3}$ B. Mauss, ${ }^{4,2}$ P. Morfouace,,${ }^{2,9}$ M. Niikura, ${ }^{3}$ J. Pancin, ${ }^{2}$ A. Poves, ${ }^{10}$ T. Roger, ${ }^{2}$ T. Saito, ${ }^{11}$ C. Stodel, ${ }^{2}$ and J-C. Thomas ${ }^{2}$
${ }^{1}$ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
${ }^{2}$ Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bd. Henri Becquerel, 14076 Caen, France
${ }^{3}$ Department of Physics, Unviversity of Tokyo
${ }^{4}$ RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
${ }^{5}$ LPC Caen, Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, Caen, France
${ }^{6}$ Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan
${ }^{7}$ Center for Nuclear Study, University of Tokyo
${ }^{8}$ CEA, Centre de Saclay, IRFU, Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
${ }^{9}$ CEA, DAM, DIF, F-91297 Arpajon, France
${ }^{10}$ Universidad Autónoma de Madrid, MADRID, Spain
${ }^{11}$ National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 - Japan

Studies of ${ }^{35,36} \mathrm{Ca}$: what is known ?

${ }^{34} \mathrm{Ca}$ is unbound
Only the g.s. of ${ }^{35} \mathrm{Ca}$ and ${ }^{36} \mathrm{Ca}$ are bound
Only first excited state 2^{+}of ${ }^{36} \mathrm{Ca}$ is known
It is above $S_{2 p}$ (but considered as quasi-bound as well below B_{c}) $Z=20$

The ground and excited states of ${ }^{35,36} \mathrm{Ca}$ studied by (p, d) and (p, t) Transfer reactions from ${ }^{38} \mathrm{Ca}$ and ${ }^{37} \mathrm{Ca}$ radioactive beams at $50 \mathrm{~A} . \mathrm{MeV}$

${ }^{34} \mathrm{Ca}$	${ }^{35} \mathrm{Ca}$	${ }^{36} \mathrm{Ca}$	${ }^{37} \mathrm{Ca}$	${ }^{38} \mathrm{Ca}$	${ }^{39} \mathrm{Ca}$	${ }^{40} \mathrm{Ca}$
${ }^{33} \mathrm{~K}$	${ }^{34} \mathrm{~K}$	${ }^{35} \mathrm{~K}$	${ }^{36} \mathrm{~K}$	${ }^{37} \mathrm{~K}$	${ }^{38} \mathrm{~K}$	${ }^{39} \mathrm{~K}$
${ }^{32} \mathrm{Ar}$	${ }^{33} \mathrm{Ar}$	${ }^{34} \mathrm{Ar}$	${ }^{35} \mathrm{Ar}$	${ }^{36} \mathrm{Ar}$	${ }^{37} \mathrm{Ar}$	${ }^{38} \mathrm{Ar}$
${ }^{31} \mathrm{Cl}$	${ }^{32} \mathrm{Cl}$	${ }^{33} \mathrm{Cl}$	${ }^{34} \mathrm{Cl}$	${ }^{35} \mathrm{Cl}$	${ }^{36} \mathrm{Cl}$	${ }^{37} \mathrm{Cl}$
${ }^{30} \mathrm{~S}$	${ }^{31} \mathrm{~S}$	${ }^{32} \mathrm{~S}$	${ }^{33} \mathrm{~S}$	${ }^{34} \mathrm{~S}$	${ }^{35} \mathrm{~S}$	${ }^{36} \mathrm{~S}$

${ }^{36} \mathrm{Ca}$: a new doubly magic nucleus with colossal breaking of mirror symmetry

${ }^{34} \mathrm{Ca}$ is unbound
Only the g.s. of ${ }^{35} \mathrm{Ca}$ and ${ }^{36} \mathrm{Ca}$ are bound
Only first excited state 2^{+}of ${ }^{36} \mathrm{Ca}$ is known
It is above $S_{2 p}$ (but considered as quasi-bound as well below B_{c}) $Z=20$

The ground and excited states of ${ }^{35,36} \mathrm{Ca}$ studied by (p, d) and (p, t) Transfer reactions from ${ }^{38} \mathrm{Ca}$ and ${ }^{37} \mathrm{Ca}$ radioactive beams at $50 \mathrm{~A} . \mathrm{MeV}$

Layout

Experimental technique and set-up
Mirror energy difference: motivation and results Double magicity of ${ }^{36} \mathrm{Ca}$

${ }^{34} \mathrm{Ca}$	${ }^{35} \mathrm{Ca}$	${ }^{36} \mathrm{Ca}$	${ }^{37} \mathrm{Ca}$	${ }^{38} \mathrm{Ca}$	${ }^{39} \mathrm{Ca}$	${ }^{40} \mathrm{Ca}$
${ }^{33} \mathrm{~K}$	${ }^{34} \mathrm{~K}$	${ }^{35} \mathrm{~K}$	${ }^{36} \mathrm{~K}$	${ }^{37} \mathrm{~K}$	${ }^{38} \mathrm{~K}$	${ }^{39} \mathrm{~K}$
${ }^{32} \mathrm{Ar}$	${ }^{33} \mathrm{Ar}$	${ }^{34} \mathrm{Ar}$	${ }^{35} \mathrm{Ar}$	${ }^{36} \mathrm{Ar}$	${ }^{37} \mathrm{Ar}$	${ }^{38} \mathrm{Ar}$
${ }^{31} \mathrm{Cl}$	${ }^{32} \mathrm{Cl}$	${ }^{33} \mathrm{Cl}$	${ }^{34} \mathrm{Cl}$	${ }^{35} \mathrm{Cl}$	${ }^{36} \mathrm{Cl}$	${ }^{37} \mathrm{Cl}$
${ }^{30} \mathrm{~S}$	${ }^{31} \mathrm{~S}$	${ }^{32} \mathrm{~S}$	${ }^{33} \mathrm{~S}$	${ }^{34} \mathrm{~S}$	${ }^{35} \mathrm{~S}$	${ }^{36} \mathrm{~S}$

Not discussed here: Astrophysical impact L. Lalanne et al., PRC 103 (2021)

Experimental set-up and technique
Drift chamber

Some words about the Mirror Symmetry

Nuclear spectra between mirror nuclei usually very similar -> very small Mirror Energy difference (MED) Except for unbound states e.g. ${ }^{16} \mathrm{~F}-{ }^{16} \mathrm{~N}$ I. Stefan et al. PRC 90 (2014) where the MED is of about 650 keV .

Inversion between the ground $1 / 2^{-}$and excited state $5 / 2^{-}$(separated by 27 keV) of $\mathrm{A}=73$ mirror nuclei cannot be explained Hoff et al. Nature 580 (2020)

Lenzi et al. PRC 102 (2020) calculated a 40-keV MED, explaining why these two levels are inverted. Henderson and Stroberg PRC 102 (2020) concur to say that this shift has 30% chance to occur.

Mirror symmetry and shape coexistence

'Colossal' MED (-700 keV) predicted between the $0^{+}{ }_{1}$ and $0^{+}{ }_{2}$ states in ${ }^{36} \mathrm{~S}-{ }^{36} \mathrm{Ca}$, Valiente-Dobon et al., PRC 98 (2018). Due to the very different configuration of the spherical ground state and intruder O^{+}state

${ }^{37} \mathrm{Ca}(\mathrm{p}, \mathrm{d}){ }^{36} \mathrm{Ca}$ reaction to probe neutron-hole states

${ }^{37} \mathrm{Ca}(\mathrm{p}, \mathrm{d})^{36} \mathrm{Ca}$ reaction to probe neutron-hole states

${ }^{37} \mathrm{Ca}(\mathrm{p}, \mathrm{d})^{36} \mathrm{Ca}$ reaction to probe neutron-hole states

${ }^{37} \mathrm{Ca}(\mathrm{p}, \mathrm{d})^{36} \mathrm{Ca}$ reaction to probe neutron-hole states

The sequence of $L=2, L=0$ and $L=2$ removal from the $d_{3 / 2}, S_{1 / 2}$ and $d_{5 / 2}$ orbitals is found with expected occupancy values $\Delta \mathrm{M}\left({ }^{36} \mathrm{Ca}\right)=-6480(40) \mathrm{keV}$ agrees with penning trap measurement of $\Delta \mathrm{M}\left({ }^{36} \mathrm{Ca}\right)=-6483.6(56) \mathrm{keV}$ Surbook et al. PRC $103(2021)_{10}$

MED for the 2^{+}and 1^{+}states

Upward shift of the $(1,2)^{+}$states in ${ }^{36} \mathrm{~S}$ as they feel more Coulomb repulsion than the g.s. does
The 0^{+}ground state has 2 protons in the $2 \mathrm{~s}_{1 / 2}$ orbital with rather large radius.
The $(1,2)^{+}$state has a proton ($p h$) structure with one proton in $2 s_{1 / 2}$ and the other in the $1 d_{3 / 2}$ orbits (smaller r)

${ }^{38} \mathrm{Ca}(\mathrm{p}, \mathrm{t}){ }^{36} \mathrm{Ca}$ reaction to probe 0^{+}states

${ }_{36} \mathrm{Ca}$ Exp.
${ }^{36} \overline{\mathrm{~S}} \mathrm{Exp}$.
Very large MED between the $0^{+}{ }_{2}$ states -> first excited state in ${ }^{36} \mathrm{Ca}$

MED for the $0^{+}{ }_{2}$

Coulomb force does not change the structure betweeen the mirror states but highlights their configuration

${ }^{36} \mathrm{Ca}$: a new doubly-magic nucleus

Only one bound state in ${ }^{35} \mathrm{Ca}$
$\operatorname{Gap}(\mathrm{N}=16) \approx \mathrm{S}_{\mathrm{n}}\left({ }^{37} \mathrm{Ca}\right)-\mathrm{S}_{\mathrm{n}}\left({ }^{36} \mathrm{Ca}\right)$

\rightarrow First mass measurement of ${ }^{35} \mathrm{Ca}$

$$
\Delta M\left({ }^{35} \mathrm{Ca}\right)=(-4805 \pm 140) \mathrm{keV}
$$

$$
->S_{n}\left({ }^{36} \mathrm{Ca}\right)=19.36(15) \mathrm{MeV}
$$

Gap($\mathrm{N}=34$) $\approx 2.28(18) \mathrm{MeV}$
'Evidence for a new magic number $\mathrm{N}=34$, Magic nature of ${ }^{54} \mathrm{Ca}$ ' Steppenbeck Nature (2013), Michimasa PRL 121 (2018)

Conclusions

${ }^{36} \mathrm{Ca}$ proven to be a doubly-magic nucleus: $\mathrm{N}=16$ gap $=4.60(15) \mathrm{MeV}$
Its ground and excited states exhibit rather pure configurations
Its Intruder state $0^{+}{ }_{2}$ has very different structure from the $0^{+}{ }_{1}$ ground state

Coulomb force induces significant changes between the binding energies of states in the mirror ${ }^{36} \mathrm{Ca}-{ }^{36} \mathrm{~S}$ nuclei

About - 250 keV MED for the 2^{+}and 1^{+}states.
About -500 keV for the $0^{+}{ }_{2}$ the largest MED ever observed
The breaking of MED is evidenced for the first time in the case of shape coexistence thanks to the double-magicity of ${ }^{36} \mathrm{Ca}$

Backup slides

Small MED < 100 keV

Large MED > 250 keV

\rightarrow First mass measurement of ${ }^{35} \mathrm{Ca}$

$$
\Delta M=(-4805 \pm 140) \mathrm{keV}
$$

\rightarrow Discovery of the first $3 / 2^{+}$excited state of ${ }^{35} \mathrm{Ca}$

${ }^{36} \mathrm{Ca}$: a new doubly-magic nucleus

\rightarrow First mass measurement of ${ }^{35} \mathrm{Ca}$

$$
\Delta M=(-4805 \pm 140) \mathrm{keV}
$$

Other arguments in favor of magicity:
Centoid of ph excitation states at 3.8 MeV
C^{2} S close to 'single-particle' values

Gap(N=34) $\approx 2 \mathrm{MeV}$
'Evidence for a new magic number $\mathrm{N}=34$ ' Steppenbeck et al., Nature (2013)

${ }^{37} \mathrm{Ca}(\mathrm{p}, \mathrm{d})^{36} \mathrm{Ca}$ reaction to probe neutron-hole states

E* $\left.{ }^{36} \mathrm{Ca}\right)$

1	2	6	occupancy
0^{+}	$1^{+}, 2^{+}$	$1^{+}-4^{+}$	$J \pi$
2	0	2	L transfer

$C^{2} S$	E*	J^{π}	J^{π}	E*	$\mathrm{C}^{2} \mathrm{~S}$	MED (keV)
0.28(7)	4.71(9)	2^{+}	2^{+}	4.577	0.25(5)	+ 133(90)
0.61(13)	4.24(4)	1	$1+$	4.523	0.75(15)	- 280(41)
0.66(14)	3.045 (2)	2^{+}	2^{+}	2.295	0.86(17)	-245(5)

1.06(22)

$$
0^{+} \frac{}{{ }^{36} \mathrm{Ca}} \quad{ }^{36} \mathrm{~S} 0^{+}
$$

$$
1.06
$$

$(1,2)^{+}$states in ${ }^{36} S$ have more repulsive Coulomb force than the g.s. due to their proton $(p h)$ structure from $2 s_{1 / 2}$ (large r) to $1 d_{3 / 2}$ orbits (smaller r)

