Coulomb force as a magnifying glass of shell structure in the ³⁶S - ³⁶Ca mirror nuclei

L. Lalanne,^{1,2} * O. Sorlin,^{2,†} M. Assié,¹ F. Hammache,¹ N. de Séréville,¹ S. Koyama,^{3,2} D. Suzuki,⁴ F. Flavigny,^{1,5} D. Beaumel,¹ Y Blumenfeld,¹ B. A. Brown,⁶ F. De Oliveira Santos,² F. Delaunay,⁵ S. Franchoo,¹ J. Gibelin,⁵ V. Girard-Alcindor,² J. Guillot,¹ O. Kamalou,² N. Kitamura,⁷ V. Lapoux,⁸ A. Lemasson,² A. Matta,³ B. Mauss,^{4,2} P. Morfouace,^{2,9} M. Niikura,³ J. Pancin,² A. Poves,¹⁰ T. Roger,² T. Saito,¹¹ C. Stodel,² and J-C. Thomas² ¹Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France ²Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF-CNRS/IN2P3, Bd. Henri Becquerel, 14076 Caen, France ³Department of Physics, Unviversity of Tokyo ⁴RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan ⁵LPC Caen, Normandie Université, ENSICAEN, UNICAEN, CNRS/IN2P3, Caen, France ⁶Department of Physics and Astronomy, National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan ⁷Center for Nuclear Study, University of Tokyo ⁸CEA, Centre de Saclay, IRFU, Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France ⁹CEA, DAM, DIF, F-91297 Arpajon, France ¹⁰Universidad Autónoma de Madrid, MADRID, Spain ¹¹National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565 - Japan

Oral contribution Colloque GANIL 2021

1

Studies of ^{35,36}Ca: what is known?

³⁴Ca is unbound

Only the g.s. of ³⁵Ca and ³⁶Ca are bound

Only first excited state 2⁺ of ³⁶Ca is known

It is above S_{2p} (but considered as quasi-bound as well below B_c) Z=20

The ground and excited states of ^{35,36}Ca studied by (p,d) and (p,t) Transfer reactions from ³⁸Ca and ³⁷Ca radioactive beams at 50 A.MeV

(p,t) (p,t) (p,t)											
)	³⁴ Ca	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Ca	⁴⁰ Ca				
	³³ K	³⁴ K	³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K				
	³² Ar	³³ Ar	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar				
	³¹ Cl	³² Cl	³³ Cl	³⁴ Cl	³⁵ Cl	³⁶ Cl	³⁷ Cl				
	³⁰ S	³¹ S	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S				
			9				0				

N=16

N=20

³⁶Ca: a new doubly magic nucleus with colossal breaking of mirror symmetry

³⁴Ca is unbound

- Only the g.s. of ³⁵Ca and ³⁶Ca are bound
- Only first excited state 2⁺ of ³⁶Ca is known

It is above S_{2p} (but considered as quasi-bound as well below B_c) Z=20

The ground and excited states of ^{35,36}Ca studied by (p,d) and (p,t) Transfer reactions from ³⁸Ca and ³⁷Ca radioactive beams at 50 A.MeV

Layout

Experimental technique and set-up Mirror energy difference: motivation and results Double magicity of ³⁶Ca

(p,t) (p,d) (p,t)											
³⁴ Ca	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Ca	⁴⁰ Ca					
³³ K	³⁴ K	³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K					
³² Ar	³³ Ar	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar					
³¹ Cl	³² C1	³³ Cl	³⁴ Cl	³⁵ Cl	³⁶ Cl	³⁷ Cl					
³⁰ S	³¹ S	32 S	³³ S	³⁴ S	³⁵ S	³⁶ S					

N=16

N=20

Some words about the Mirror Symmetry

Nuclear spectra between mirror nuclei usually very similar -> very small Mirror Energy difference (MED) Except for unbound states e.g. ¹⁶F - ¹⁶N *I. Stefan et al. PRC 90 (2014)* where the MED is of about 650 keV.

Inversion between the ground $1/2^{-}$ and excited state $5/2^{-}$ (separated by 27 keV) of A=73 mirror nuclei cannot be explained *Hoff et al. Nature 580 (2020)*

Lenzi et al. PRC 102 (2020) calculated a 40-keV MED, explaining why these two levels are inverted. *Henderson and Stroberg PRC 102 (2020)* concur to say that this shift has 30% chance to occur.

Mirror symmetry and shape coexistence

'Colossal' MED (-700 keV) predicted between the 0_{1}^{+} and 0_{2}^{+} states in ${}^{36}S - {}^{36}Ca$, Valiente-Dobon et al., PRC 98 (2018). Due to the very different configuration of the spherical ground state and intruder 0^+_2 state

E(keV)

3346

"6

π

 0^{+}_{2}

0⁺1

³⁶S₂₀

 $0^{+}{}_{2}$

 0^{+}_{1}

³⁶C

The sequence of L=2, L=0 and L=2 removal from the $d_{3/2}$, $s_{1/2}$ and $d_{5/2}$ orbitals is found with expected occupancy values ΔM (³⁶Ca) = - 6480(40) keV agrees with penning trap measurement of ΔM (³⁶Ca) = - 6483.6(56) keV *Surbook et al. PRC 103 (2021)* 10

MED for the 2⁺ and 1⁺ states

Upward shift of the $(1,2)^+$ states in ³⁶S as they feel more Coulomb repulsion than the g.s. does The 0⁺ ground state has 2 protons in the $2s_{1/2}$ orbital with rather large radius. The $(1,2)^+$ state has a proton *(ph)* structure with one proton in $2s_{1/2}$ and the other in the $1d_{3/2}$ orbits (smaller r)

³⁸Ca(p,t)³⁶Ca reaction to probe O⁺ states

Very large MED between the 0^{+}_{2} states -> first excited state in 36 Ca

MED for the 0⁺₂

Coulomb force does not change the structure betweeen the mirror states but highlights their configuration

³⁶Ca: a new doubly-magic nucleus

Conclusions

³⁶Ca proven to be a doubly-magic nucleus: N=16 gap = 4.60(15) MeV

Its ground and excited states exhibit rather pure configurations

Its Intruder state 0⁺₂ has very different structure from the 0⁺₁ ground state

Coulomb force induces significant changes between the binding energies of states in the mirror ³⁶Ca-³⁶S nuclei

About -250 keV MED for the 2⁺ and 1⁺ states.

About -500 keV for the 0⁺₂ the largest MED ever observed

The breaking of MED is evidenced for the first time in the case of shape coexistence thanks to the double-magicity of ³⁶Ca

Backup slides

 \rightarrow First mass measurement of ³⁵Ca $\Delta M = (-4805 \pm 140) keV$

3/2+

 $1/2^{+}$

22 20

 \rightarrow Discovery of the first 3/2⁺ excited state of ³⁵Ca

³⁶Ca: a new doubly-magic nucleus

