DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

Radioresistance in Chondrosarcoma using the CIRIL-ARIA biology platform

François Chevalier

CHONDROSARCOMAS

• Chondrosarcoma is a rare bone malignant tumor arising from cartilaginous tissues

Atypical cartilage tumour (Grade 1)

10 years survival: 83%

metastasis: 0 %

Grade 2

• 10 years survival: 64%

metastasis: 10 %

Grade 3

10 years survival: 29%

metastasis: 71 %

CHONDROSARCOMAS TREATMENTS

- Surgery is the only treatment option
- Chemo and Radiotherapy is not very effective
- Patients with inoperable disease have no other treatment options

Median survival ≈ 17 months

- > Treatment are not efficient
- Need of new modalities of treatment

PARTICLE THERAPY WITH C-IONS AND PROTONS

- Could be a new possibility of treatment for local advanced unresectable CH
- improved tumor control
- reduced side effects on healthy tissues

CHONDROSARCOMAS AND PARTICLE THERAPY

Objectives of our pre-clinical studies

in vitro irradiation of chondrosarcoma cell lines (different doses)

Healthy tissues: plateau LET ~ 30 keV/µm

Tumor: SOBP LET ~ 90 keV/µm

CIRIL-ARIA biology platform

for cell cultures and biochemistry experiments

Biochemistry lab

located within the INB secure area facilitating cell transfer between irradiation room and cell culture lab

Cell cultures lab

Irradiation conditions

- GANIL: interdisciplinary Program Advisory Committee (iPAC) with the High Energy beam line in D1: P1146-H and P1243-H
 - \triangleright C-ions 95 MeV/A native (LET = 28 keV/ μ m)
 - \triangleright C-ions 95 MeV/A + 16,9 mm PMMA (LET = 73 keV/ μ m)
- Proton SOBP (LET = 11 keV/μm)
- X-rays 225 KV (LET ~1,3 keV/μm)

X-RAD 225 KV CYCERON Caen

High Energy beam line in D1 GANIL

Proton (Catania, Italy)

Biological material: chondrosarcoma cell lines

Main experiments:

- Cell survival : clonogenic assays
 - Different LET
 - ➤ With PARPi
- DNA damages : micro-nuclei assays
 - > X-Rays vs C-ions
- Cell-cycle effects : flow cytometry
 - > X-Rays vs C-ions
- growing effects : cell Trace assays
 - X-rays vs Protons vs C-ions + Parpi

Cell survival with X-rays vs C-ions (diff LET)

+++

++

+++

Clonogenic survival

	D10 ^a	D37 ^b	SF2 ^c	RBE (D10) ^d	RBE (D37) ^e	
SW1353						
X-Rays 225 KV	6,696	3,413	0,584	/	/	
Carbon 28 keV/µm	2,989	1,291	0,214	2,240	2,645	
Carbon 73 keV/µm	1,306	0,564	0,029	5,126	6,051	
CH2879						
X-Rays 225 KV	5,947	3,400	0,618		1	
Carbon 28 keV/µm	2,467	1,065	0,155	2,410	3,191	
Carbon 73 keV/µm	1,079	0,466	0,014	5,513	7,300	
OUMS27						
X-Rays 225 KV	6,737	3,333	0,570	<i>,</i>	,'	
Carbon 28 keV/µm	3,303	1,426	0,248	2,040	2,337	
Carbon 73 keV/µm	1,319	0,570	0,030	5,106	5,849	
L835						
X-Rays 225 KV	4,182	1,938	0,358			
Carbon 28 keV/µm	1,657	0,715	0,062	2,524	2,708	
Carbon 73 keV/µm	1,119	0,483	0,016	3,738	4,012	

- differential radioresistance
- increased effect of C-ions (vs X-rays)
- increased effect with increasing the LET

Cell survival with X-rays vs Protons vs C-ions + PARPi

CH2879

Clonogenic survival

	D10 ^a	D37 ^b	SF2 ^c	ER (D10) ^d	ER (D37) ^e
X-rays	5.9	3.8	0.75	/	/
X-rays + PARPi	4.3	3	0.7	1.37	1.27
Protons	5.1	2.7	0.5	/	/
Protons + PARPi	2.9	1.4	0.2	1.76	1.93
C-ions	2	0.9	0.1	/	/
C-ions + PARPi	1.4	0.6	0.03	1.43	1.5

a the D10 dose gives a surviving fraction of 0.1.

- Biological effect : X-rays < protons < C-ions</p>
- PARPi effective as radio-sensitizing agents with both irradiations

b the D37 dose gives a surviving fraction of 0.37.

c the SF2 fraction is observed at 2 Gy irradiation.

^d ER (D10) values are calculated as: D10 (with PARPi) / D10 (without PARPi) for each irradiation quality.

^e ER (D37) values are calculated as: D37 (with PARPi) / D37 (without PARPi) for each irradiation quality.

DNA DAMAGES: X-RAYS vs C-iONS

Micro-nuclei assays

Observation of MN after cell division = DNA damages

More DNA damages with same dose X-rays < C-ions</p>

CELL-CYCLE EFFECTS: X-RAYS vs C-iONS

Cell cycle (Flow cytometry)

- Increase in S and G2/M phases with C-ions
- Cell cycle blockage in G2/M phase

- More DNA damages
- DNA damages more difficult to repair

X-rays < C-ions

GROWING EFFECTS: WITH X-RAYS VS PROTONS VS C-IONS + PARPI

Cell trace assay analysis

- > Reduced cell divisions
- X-rays < protons < C-ions</p>
- ➤ Parpi increase the biological effect

Main conclusions:

- Chondrosarcoma cell lines are radioresistant
- Differences between cell lines
 L835 > CH2879 > OUMS27 SW1353
- carbon ions decrease survival compared to X-rays
- carbon ions increase micro-nuclei
- carbon ions increase blockage in G2 / M
- carbon ions induce damages more difficult to repair
- PARPi effective as radio-sensitizing agents
- With X-rays / protons / C-ions

Ongoing projects (2020 – 2024)

Chondrosarcoma and radiation-resistance

- status of cancer stem cells (CSCs) in tumor radioresistance?
- Can we overcome this radioresistance with hadrontherapy in combined treatments?

Ongoing projects (2020 – 2024)

OUMS27 inhibée

CSC Biomarkers analysis

	% ALDH high cells					
	С	t	diff			
SW1353	0,26	1,17	0,91			
Oums27	0,28	10,1	9,82			
L835	0,14	1,69	1,55			

Development of 3D models
Spheroids with chondrosarcoma cells

Role of hypoxia /CSC in radioresistance

OUMS27 ALDH

Acknowledgments

and

beam time with iPAC committees

- F. Chevalier
- S. Haghdoost
- A. Gilbert
- M. Césaire
- C. Lepleux

Platform and collaborative labs:

Funding agencies:

Thank you for your attention!

Any questions?