DE LA RECHERCHE À L'INDUSTRIE

Production and decay spectroscopy of neutron-deficient actinides at IGISOL using ²³²Th(p,x)Y reaction

Emmanuel Rey-herme CEA/Irfu/DphN

Supervised by M. Vandebrouck (CEA/Irfu/DPhN) In collaboration with I. Moore, I. Pohjalainen and A. Raggio (University of Jyväskylä)

Colloque GANIL September 2021

Prediction of strong octupolar deformations in the ground state of neutron-deficient actinides :

S. E. Agbemava *et al.* PRC 96 (2017)

Cea Physics motivation

Mass excess uncertainty in the neutron-deficient actinides. The nuclei produced through 232 Th(p,x)Y reaction at IGISOL are highlighted in the green area.

²¹⁷ Ра	²¹⁸ Ра	²¹⁹ Ра	²²⁰ Ра	²²¹ Ра	²²² Ра	²²³ Ра	²²⁴ Ра	²²⁵ Ра	²²⁶ Ра	²²⁷ Pa	²²⁸ Ра	²²⁹ Ра	²³⁰ Ра	²³¹ Ра	²³² Ра	²³³ Ра
_{0.01 MeV}	0.02 меV	0.07 меV	^{0.01 меv}	0.06 меV	0.09 меV	0.08 меV	_{0.01 MeV}	0.08 меV	^{0.01 MeV}	_{0.01 MeV}	_{0 ме} у	_{0 МеV}	_{0 меv}	_{0 МеV}	0.01 меV	_{0 Ме} у
²¹⁶ Th	²¹⁷ Th	²¹⁸ Th	²¹⁹ Th	²²⁰ Th	²²¹ Th	²²² Th	²²³ Th	²²⁴ Th	²²⁵ Th	²²⁶ Тһ	²²⁷ Th	²²⁸ Th	²²⁹ Th	²³⁰ Th	²³¹ Th	²³² Th
0.01 MeV	_{0.01 MeV}	0.01 меV	0.06 меV	_{0.01 MeV}	0.01 MeV	0.01 меV	0.01 MeV	_{0.01 MeV}	0.01 МеV	^{0 меv}	^{0 меv}	^{0 MeV}	_{0 MeV}	^{0 меv}	^{0 MeV}	_{0 ме} у
²¹⁵ Ac	²¹⁶ Ac	²¹⁷ Ac	²¹⁸ Ac	²¹⁹ Ac	²²⁰ Ac	²²¹ Ac	²²² Ac	²²³ Ac	²²⁴ Ac	²²⁵ Ac	²²⁶ Ac	²²⁷ Ac	²²⁸ Ac	²²⁹ Ac	²³⁰ Ac	²³¹ Ac
0.01 MeV	0.01 MeV	0.01 MeV	0.06 MeV	0.05 MeV	0.01 MeV	0.06 MeV	0 MeV	0.01 MeV	0 MeV	_{0 MeV}	0 MeV	0 MeV	0 MeV	0.01 MeV	0.02 MeV	0.01 MeV
²¹⁴ Ra	²¹⁵ Rа	²¹⁶ Ra	²¹⁷ Ra	²¹⁸ Ra	²¹⁹ Rа	²²⁰ Rа	²²¹ Rа	²²² Rа	²²³ Rа	²²⁴ Ra	²²⁵ Rа	²²⁶ Rа	²²⁷ Rа	²²⁸ Rа	²²⁹ Rа	²³⁰ Ra
_{0.01 MeV}	_{0.01 MeV}	0.01 меV	0.01 меV	_{0.01 MeV}	0.01 меV	_{0.01 MeV}	^{0 MeV}	_{0 МеV}	_{0 МеV}	_{0 MeV}	_{0 МеV}	_{0 Ме} у	_{0 Ме} у	_{0 МеV}	_{0.02 MeV}	0.01 MeV
²¹³ Fr	²¹⁴ Fr	²¹⁵ Fr	²¹⁶ Fr	²¹⁷ Fr	²¹⁸ Fr	²¹⁹ Fr	²²⁰ Fr	²²¹ Fr	²²² Fr	²²³ Fr	²²⁴ Fr	²²⁵ Fr	²²⁶ Fr	²²⁷ Fr	²²⁸ Fr	²²⁹ Fr
0 MeV	0.01 MeV	0.01 MeV	0 MeV	0.01 MeV	_{0 MeV}	0.01 MeV	0 MeV	0 меV	0.01 MeV	0 MeV	0.01 MeV	0.01 MeV	0.01 MeV	0.01 MeV	0.01 MeV	0.01 MeV
²¹² Rn	²¹³ Rn	²¹⁴ Rn	²¹⁵ Rn	²¹⁶ Rn	²¹⁷ Rn	²¹⁸ Rn	²¹⁹ Rn	²²⁰ Rn	²²¹ Rn	²²² Rn	²²³ Rn	²²⁴ Rn	²²⁵ Rn	²²⁶ Rn	²²⁷ Rn	²²⁸ Rn
0 меV	^{0 меV}	0.01 меV	0.01 меV	0.01 MeV	^{0 MeV}	^{0 MeV}	^{0 MeV}	0 меV	0.01 MeV	_{0 МеV}	0.01 меV	0.01 MeV	0.01 меV	_{0.01 MeV}	0.01 меV	0.02 MeV
²¹¹ At _{0 MeV}	²¹² At 0 MeV	²¹³ At _{0 MeV}	²¹⁴ At _{0 MeV}	²¹⁵ At 0.01 MeV	²¹⁶ At _{0 MeV}	²¹⁷ At 0.01 MeV	²¹⁸ At 0.01 MeV	²¹⁹ At _{0 MeV}	²²⁰ At 0.01 MeV	²²¹ At 0.01 MeV	²²² At 0.02 MeV	²²³ At 0.01 MeV	²²⁴ At 0.02 MeV			
²¹⁰ Po	²¹¹ Po	²¹² Po	²¹³ Po	²¹⁴ Po	²¹⁵ Po	²¹⁶ Po	²¹⁷ PO	²¹⁸ Po	Mass Excess error [MeV]							
_{0 MeV}	0 MeV	0 MeV	_{0 MeV}	_{0 MeV}	_{0 MeV}	_{0 MeV}	0.01 MeV	_{0 MeV}								
²⁰⁹ Ві _{0 МеV}	²¹⁰ Bi ^{0 MeV}	²¹¹ Bi 0.01 MeV	²¹² Bi ^{0 MeV}	²¹³ Bi 0.01 MeV	²¹⁴ Bi 0.01 MeV	²¹⁵ Bi 0.01 MeV	²¹⁶ Bi 0.01 MeV	²¹⁷ Bi 0.02 MeV	0	0.	02	0.05	0	.07	0.09)
²⁰⁸ Pb 0 MeV	²⁰⁹ Pb _{0 MeV}	²¹⁰ Pb 0 MeV	²¹¹ Pb _{0 MeV}	²¹² Рb 0 меV	²¹³ Pb 0.01 MeV	²¹⁴ Pb 0 MeV	²¹⁵ Рb 0.05 меV			ong-liv	ved		Unkn	own		

DE LA RECHERCHE À L'INDUSTRI

I262 experiment at IGISOL

On going analysis : $^{225}Pa \rightarrow ^{221}Ac \rightarrow ^{217}Fr$

Existing literature :

225 Pa decay data

Element	Our work							
	$\overline{E_{\alpha}(\text{keV})}$	<i>I</i> (%)						
²²⁵ Pa	7170(5)	17(1)						
	7235(5)	30(2)						
	7261(5)	53(2)						
²²¹ Ac								
	7373(5)	6(1)						
	7437(5)	20(2)						
	7641(5)	74(3)						
²¹⁷ Fr	8312(5)							
²¹³ At	9080(5)							

(1988) Nuclear Inst. and Methods in Physics Research, B, 31 (3), pp. 483-486 DE LA RECHERCHE À L'INDUSTRIE

Contamination Peaks

Colloque GANIL

Data analysis for mass 225

To do list :

²²⁵Pa data analysis :

- Extraction the multi-polarities of the transitions
- Interpretation of the results

Continue the analysis with the ²²¹Ac data

Future experiments planned :

- ²³³U(p,x)Y reaction at IGISOL
- Improve the decay spectroscopy setup using the SEASON detector at Jyväskylä
- Move toward laser spectroscopy with SEASON at Jyväskylä and at GANIL-SPIRAL2

DE LA RECHERCHE À L'INDUSTRI

E. Rey-herme

Colloque GANIL

DE LA RECHERCHE À L'INDUSTRI

Thank you for your attention !