

Harnessing photochemistry in radiotracer synthesis

Prof. Dr Jason P. Holland

Department of Chemistry

University of Zurich

E-mail: jason.holland@chem.uzh.ch

Website: www.hollandlab.org

Twitter: @HollandLab_

From chemistry to imaging science...

Current research areas

Radionuclides in Nuclear Medicine

	1	7]β−t	hera	ру		γ ima	aging		α	thera	ру				18			
	H 1 6.97	2	1		β⁺i	magi	ng 📘		mixe	d			13	14	15	16	17	He 2 20.18			
	Li 3 22.99	4 24.30].	-							8 5 26.98	28.08	N 7 30.97	0 8 32.07	F , 32.45	Ne 10 39.95			
	11 39:10 K	12 40.08 Ca	3 44.96 Sc	4 47.87 Ti	5 50.94 V	6 52.00 Cr	7 54.94 Mn	8 55.85 Fe	9 58.93 Co	10 58.69 Ni	11 63.55 Cu	12 65.38 Zn	13 69.72 Ga	14 72.63 Ge	15 74.92 As	5 16 78.97 Se	17 79.91 Br	18 B3.80 Kr			
	19 85.47 Rb	20 87.62 Sr	21 88.91 Y	22 91.22 Zr	23 92.91 Nb	24 95.95 Mo	25 Tc	26 101.1 Ru	27 102.9 Rh	28 106.4 Pd	29 107.9 Ag	30 112.4 Cd	31 114.8 In	32 118.7 Sn	33 121.8 Sb	34 127.6 Te	35 126.9	36 131.3 Xe			
	132.9 Cs 55	137.3 Ba 56	57-71	178.5 Hf 72	180.9 Ta 73	183.8 W 74	186.2 Re 75	190.2 OS 76	192.2 Ir 77	195.1 Pt 78	197.0 Au 79	200.6 Hg 80	204.4 TI B1	207.2 Pb 82	209.0 Bi 83	52 Po 84	At 85	86 86			
	Fr 87	Ra 88	89-103	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt 109	Ds 110	Rg 111	Cn 112	Nh 113	FI 114	Mc 115	Lv 116	Ts 117	Og 118			
			138.9 La 57	140.1 Ce 58	140.9 Pr 59	144.2 Nd 60	Pm	150.4 Sm 62	152.0 Eu 63	157.3 Gd 64	158.9 Tb 65	162.5 Dy 66	164.9 Ho 57	167.3 Er 68	168.9 Tm 69	173.0 Yb 70	175.0 Lu 71				
			Ac 89	232.0 Th 90	231.0 Pa 91	238.0 U 92	Np 93	Pu 94	Am	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 102	Lr 103]			
		_	_		_				_	_			_			.			-		_
Zr	Ga			64 C										99 T	m C					22 A	5 C
40	31			29				9			49			4:				33		8	
						<u> </u>							\							1	

70, 71, 72, 74, 76, 77

Holland, Chapter 24 in Radiopharmaceutical Chemistry, Ed: Lewis, Windhorst, Zeglis, Springer, 2019, 425-446 Nickles, J. Labelled Compounds Radiopharm., 2003, 46, 1-27 Blower, Dalton Trans., 2015, 44, 4819-4844 4

⁸⁹Zr radiotracers for immunoPET in cancer

[89Zr]ZrDFO-J591 imaging of PSMA

Holland *et al.* Nucl. Med. Biol., **2009**, 36, 729 #1 Highest Cited Article in Nucl. Med. Biol. since **2008**

Holland et al. J. Nucl. Med., **2010**, *51(8)*, 1293-1300 Journal of Nuclear Medicine Editor's Choice Award, **2011**

Holland et al. PLoS ONE, 2010, 5(1), e8859

Ruggiero & Holland et al. J. Nucl. Med., 2010, 51(7), 1123-1130

Ruggiero & Holland et al. J. Nucl. Med., 2011, 52(10), 1608-1615

Ulmert *et al.* Cancer Discovery, **2012**, *2*, 320 *Highlighted as the Cover Picture, Cancer Discovery, April* **2012**

Holland et al., Nature Med., 2012, 18, 1586-1591

Holland et al., J. Nucl. Med., 2012, 53(9), 1333

Evans *et al.*, J. Nucl. Med., **2013**, *54(1)*, 90-95 *Highlighted as the Cover Picture*, *J. Nucl. Med., January* **2013**

Osbourne et al., J. Urol. 2014, 191(5),1439

Pandit-Tasker et al., Eur. J. Nucl. Med. Mol. Imaging, 2014, 41, 2093

Pandit-Tasker et al., Clin. Cancer Res. 2015, 21(23), 5277

Rylova et al., J. Nucl. Med., 2016, 57, 96-102.

Technological advances in radiolabelled proteins

Traditional methods require pre-purification and two-step chemistry

Light-induced protein conjugation for imaging and therapy

PhotoPHARMA

Holland and Patra, EP and WP patents pending, 2018/19 Patra et al. Angew. Chem. Int. Ed., 2019, 58, 1928-1933 Eichenberger et al. Chem. Comm., 2019, 55, 2257-2260 Patra et al. iScience, 2019, 13, 416-431 Fay and Holland, J. Nucl. Med., 2019, 60, 587-591 Fay et al., Bioconjugate Chem., 2019, 30, 1814-1820 Gut and Holland, Inorg. Chem., 2019, 58(18), 12302-12310 Holland, Drug Target Rev., 2019, 2, 31-34 Holland et al., Chem. Eur. J., 2020, 26, 33-48 Klingler et al., J. Nucl. Med., 2020, 61, 1072-1078 Fay et al., Org. Lett., 2020, 22(9), 3499-3503 Guillou et al., Chem. Eur. J., 2020, 26, 7185-7189 Guillou et al., Nat. Protocol, 2020, 15, 3579-3594 Fay and Holland, Chem Eur. J., 2021, 27, 4893-4897 Guillou et al., Bioconjugate Chem., 2021, in press Klingler et al., 2021, submitted Guillou et al., 2021, submitted

. . .

ACIE

Chem Eur J

iScience

Chem Eur J

Photoactivated chemistry

Photochemistry & Radiochemistry: State of Play

Photoactive chelates: DFO-ArN₃

• Desferrioxamine B (DFO) is the gold standard for ⁸⁹Zr⁴⁺ coordination

Aryl azide (ArN₃) photoinitiation mechanism

DFT calculated reaction coordinate

Patra et al., iScience, 2019, 13, 416-431

Simultaneous photoradiolabelling with ⁸⁹Zr

One-pot radiosynthesis of ⁸⁹ZrDFO-azepin-trastuzumab

- One-pot, simultaneous photochemical conjugation and ⁸⁹Zr-radiolabelling
- 89 Zr radiolabeling of DFO works at pH 6 9
- Pre-purified or fully formulated mAbs
- Two-step process: photoradiochemical conversion efficiency (PCE) ~3%
- **One-pot simultaneous process: PCE ~75%**

Crude product (395 nm, +DTPA)

Purified product (365 nm, RCP > 98%)

16

20

⁸⁹ZrDFO-azepin-trastuzumab: PET imaging

PET imaging in SK-OV-3 tumours (HER2/neu positive)

Maximum intensity projection images / videos

Maximum intensity projection (MIP) images and videos

- ⁸⁹ZrDFO-azepin-trastuzumab PET in mice bearing SK-OV-3 tumours
- Methods suitable for automation and potentially kit-based radiochemistry
- *'Instant'* radiolabelling using **formulated** antibodies in <10 min.

PET quantification

⁸⁹ZrDFO-azepin-trastuzumabVolume of interest (VOI) analysis of PET imaging data

Biodistribution data

Ex vivo analysis of ⁸⁹ZrDFO-azepin-trastuzumab distribution

Water-soluble DFO-PEG₃-ArN₃

• Functionalisation of the free NH₂ of DFO (usually) compromises water solubility

Guillou et al., Chem Eur J. 2020, 26, 7185-7189

Photoradiochemistry with [⁸⁹Zr]ZrDFO-PEG₃-ArN₃

20

24

Guillou et al., Chem Eur J. 2020, 26, 7185-7189

[⁸⁹Zr]ZrDFO-PEG₃-azepin-onartuzumab

• PET imaging and biodistribution analysis

MKN-45 tumours (right flank)

Guillou et al., Chem Eur J. 2020, 26, 7185-7189

Photoactivatable chelates: aza-macrocycles

- Complexes with variable overall charge (M³⁺ complexes: +1, 0, –1 at pH7.4)
- Suitable for use with ⁶⁴Cu²⁺, ⁶⁸Ga³⁺, ⁹⁰Y³⁺, ¹¹¹In³⁺, ¹⁷⁷Lu³⁺, ²²⁵Ac³⁺ etc

ChemComm

The chemical scope of light-induced protein ligation

Auxochromic tuning DFO-tetrazole photoreactivity

Tetrazole photoradiochemistry: ⁸⁹ZrDFO-Tz-trastuzumab

Fay and Holland, Chem Eur. J., 2021, 27, 4893-4897

Photoactivatable fluorophores: PhotoTags

Fay et al., Org. Lett., **2020**, 22(9), 3499-3503 Guillou et al., **2021**, submitted

Dual-modality probe design: PET/optical

Guillou et al., 2021, submitted

Automated radiochemistry & translation

Radiosynthesiser design: ALISI 0.0

Open-source microcontrollers (Arduino & breakout boards)

Liquid pathways (cassette)

- 3-way switching valves
- Digital servo motors
- Single-use sterile materials

Liquid transfer

- Pneumatically-driven
- Syringe pump

Photoreactor

- ~3 W output LED, λ = 365 nm
- Cooled with an old CPU fan

Wood frame, fastened together with screws and hot glue

Radiosynthesiser design: ALISI 1.0

Custom design and construction with additive manufacturing (**3D-printing**)

- LASER-cut encasing
- Custom servo-motor plates & valve holders
- Syringe pump
- Sterile, single-use cassettes

- Electropolished stainless steel photoreactor
- Custom LED cooling
- LCD display and control button
- Sarcastic comments included!

ALISI – automated photoradiosynthesis

Optimising the mAb purification step:

- PD-10 columns use Sephadex G-25
- SK-10 columns use Sephadex G-100
- Improved purification of large proteins
- Strive for RCP >99% (vs. >90%)

ALISI – automated conventional radiolabelling

The future is bright ...

Photochemistry offers new routes for the synthesis of radiotracers and functionised protein conjugates

- Chemical and mechanistic diversity
- Access new covalent bioconjugate bonds
- Ultrafast, chemoselective reactions
- Bimolecular protein conjugation in formulation buffers
- Automated photoradiosynthesis of ⁸⁹Zr-mAbs in <25 min

Acknowledgements

Follow us on Twitter @HollandLab_

www.hollandlab.org

Thank you Any questions, comments or suggestions?

jason.holland@chem.uzh.ch

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra krebsforschung schweiz recherche suisse contre le cancer ricerca svizzera contro il cancro swiss cancer research