Response of solar cells to heavy ions at energies close to 10 AMeV at GANIL

M. Sguazzin1, J.C. Thomas2, J. Pibernat1, B. Jurado1, J. Michaud1, J. Swartz1, B. Jacquot2, J. Giovinazzo1, B. Thomas1, P. Alfaurt1, T. Chiron1

1Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), CNRS/IN2P3, Gradignan, France
2Grand Accélérateur National d'Ions Lourds (GANIL), Caen, France
SOLAR CELL

Silicon - Solar Cells (Earth Solar Panels)

Germanium - Solar Cells (Space Applications)

Michele Sguazzin
GANIL Colloque Conference 2021
September 28, 2021
SOLAR CELL for ions detection

- 1979 Siegert
 First heavy ions detection at energies about 1 AMeV

CHARGE COLLECTION PROCESS IN SOLAR CELLS IS VERY DIFFERENT

Field-funneling effect

SOLAR CELL for ions detection

Main Advantages:

1) **Energy (1-2%) and time (few ns) resolution**
SOLAR CELL for ions detection

Main Advantages:

1) Energy (1-2%) and time (few ns) resolution

2) Better radiation resistance
SOLAR CELL for ions detection

Main Advantages:

1) Energy (1-2%) and time (few ns) resolution

2) Better radiation resistance

3) Flexible geometry, very robust

4) Extremely cost-efficient (5 €)
SOLAR CELL for ions detection

Solar Cells appear a very interesting alternative to Silicons detector for Heavy ions at energies between 1 and 10 AMeV.

But...

NECTAR Project:
Solar Cells as heavy ions detectors at energies $E > 1$ AMeV in UHV!

high capacitance ($4\cdot10^{\,nF/cm^2}$, 1000 times larger than Si detector), increasing with Solar Cells surface

NO TEST HAS BEEN EVER PERFORMED!!
First irradiation experiment with Heavy ions above 1 AMeV!

CIME cyclotron was used to accelerate beams of:
- ^{84}Kr at 7, 10 AMeV
- ^{129}Xe at 10,13 AMeV

First results:

1. Best performance: company Solar Made, 10x10 mm2, $\sigma(E)/E=1.5\%$ (RMS) and 3.6 ns (FWHM).
2. Stable behavior during irradiation with 100 to few 10^3 pps for a minute.

First irradiation experiment with Heavy ions above 1 AMeV!

CIME cyclotron was used to accelerate beams of:
- ^{84}Kr at 7, 10 AMeV
- ^{129}Xe at 10,13 AMeV

First results:

1. Best performance: company Solar Made, 10x10 mm2, $\sigma(E)/E=1.5\%$ (RMS) and 3.6 ns (FWHM).
2. Stable behavior during irradiation with 100 to few 10^3 pps for a minute.

New irradiation experiment (E809) :
March 2021
CIME cyclotron was used to accelerate beams of:

- \(^{84}Kr\) at 5, 10, 15 AMeV
CIME cyclotron was used to accelerate beams of:
- ^{84}Kr at 5, 10, 15 AMeV
CIME cyclotron was used to accelerate beams of:

- ^{84}Kr at 5, 10, 15 AMeV

E809 experiment (March 2021)
CIME cyclotron was used to accelerate beams of:

- ^{84}Kr at 5, 10, 15 AMeV

E809 experiment (March 2021)
CIME cyclotron was used to accelerate beams of:

- 84Kr at 5, 10, 15 AMeV

E809 experiment (March 2021)
CIME cyclotron was used to accelerate beams of:
• ^{84}Kr at 5, 10, 15 AMeV

SPIRAL facility
E809 experiment (March 2021)

CIME cyclotron was used to accelerate beams of:

• ^{84}Kr at 5, 10, 15 AMeV
CIME cyclotron was used to accelerate beams of:
- ^{84}Kr at 5, 10, 15 AMeV

SPIRAL facility
CIME cyclotron was used to accelerate beams of:
• ^{84}Kr at 5, 10, 15 AMeV
CIME cyclotron was used to accelerate beams of:

• ^{84}Kr at 5, 10, 15 AMeV
CIME cyclotron was used to accelerate beams of:
• ^{84}Kr at 5, 10, 15 AMeV

E809 experiment (March 2021)
CIME cyclotron was used to accelerate beams of:
- ^{84}Kr at 5, 10, 15 AMeV

E809 experiment (March 2021)
CIME cyclotron was used to accelerate beams of:
• ^{84}Kr at 5, 10, 15 AMeV
CIME cyclotron was used to accelerate beams of:
- 84Kr at 5, 10, 15 AMeV

E809 experiment (March 2021)
E809 experiment (March 2021)

CIME cyclotron was used to accelerate beams of:
- ^{84}Kr at 5, 10, 15 AMeV

HF signal

Solar Cell

C strippe

~100 pps

Charge-state selection using Dipole D11!
CIME cyclotron was used to accelerate beams of:
- ^{84}Kr at 5, 10, 15 AMeV

E809 experiment (March 2021)
CIME cyclotron was used to accelerate beams of:
• 84Kr at 5, 10, 15 AMeV

MAIN IMPROVEMENTS

• Better intensity control
• Better alignment with respect to the incoming beam
1. Energy ($\sigma(E)/E$) and Time (FWHM) resolution

E809 experiment (March 2021) – Final RESULTS

^{84}Kr beam

Si - 10x10 mm^2

Ge - 20x20 mm^2

Si Detector

Ge - 20x20 mm^2
E809 experiment (March 2021) – Final RESULTS

1. Energy ($\sigma(E)/E$) and Time (FWHM) resolution

^{84}Kr beam

- Si - 10x10 mm^2
- Ge - 20x20 mm^2
- Si Detector

$\sim 1.1\%$

E is the energy in AMeV, and $\sigma(E)$ is the resolution in E. The plot shows the energy resolution for different detector sizes.
E809 experiment (March 2021) – Final RESULTS

1. **Energy ($\sigma(E)/E$) and Time (FWHM) resolution**

 - **Si - 10x10 mm2**
 - **Ge - 20x20 mm2**
 - **Si Detector**

 84$^\text{Kr}$ beam

 Energy Resolution

 Time Resolution

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021
E809 experiment (March 2021) – Final RESULTS

1. Energy ($\sigma(E)/E$) and Time (FWHM) resolution

Energy Resolution

- Si - 10x10 mm^2
- Ge - 20x20 mm^2
- Si Detector

^{84}Kr beam

Very important results for NECTAR project (large detection arrays)!
2. Characterization of solar cells linearity

![Graph showing the characterization of solar cells linearity. The graph plots ADC (channel) versus energy (AMeV). Two different detector types are compared: Si - 10x10 mm2 and Si Detector. The graph highlights the linearity of the detectors across the energy range.]
2. Characterization of solar cells linearity

E809 experiment (March 2021) – Final RESULTS

Unexpected but very interesting!

Where does it come from?

Si Detector

Si - 10x10 mm²
PRELIMINARY RESULTS

3. Simulation

1) 84Kr 5 AMeV
2) 84Kr 10 AMeV
3) 84Kr 15 AMeV

ATLAS Silvaco code

CHARGE COLLECTION PROCESS IN SOLAR CELLS
E809 experiment (March 2021) - RESULTS

PRELIMINARY RESULTS

3. Simulation

1) 84Kr 5 AMeV
2) 84Kr 10 AMeV
3) 84Kr 15 AMeV

SOLAR CELLS SIGNAL IS REPRODUCED but there are still many free parameters

COLLECTION PROCESS IS RESPONSIBLE OF SOLAR CELLS NO-LINEARITY

Results:

- SOLAR CELLS SIGNAL IS REPRODUCED but there are still many free parameters.
- COLLECTION PROCESS IS RESPONSIBLE OF SOLAR CELLS NO-LINEARITY.

Graph:

- Red circles represent Si -10x10 mm2
- Black circles represent Simulation

Graph shows the relationship between Amplitude (mV) and Energy (AMeV) for different simulations and experimental data points.
E809 experiment (March 2021) – Final RESULTS

4 - Irradiation

- Silicon Detector

- 10x10 mm² - Silicon Solar Cell

\[\sim 12 \cdot 10^6 \frac{p}{cm^2} \]

\[\sim 32 \cdot 10^6 \frac{p}{cm^2} \]

84 \(Kr \) beam at 15 AMeV

before irradiation

\[\sim 12 \cdot 10^6 p/cm^2 \]

\[\sim 32 \cdot 10^6 p/cm^2 \]
Solar Cells remain an interesting alternative to Silicon Detectors still for heavy ions beams at energies > 1 AMeV!!

Main Results:

1) **20x20 Ge substrate (Azurspace)** the best performances in Energy ($\sigma(E)/E = 1.1\%$ RMS) and Time Resolution (2.6 ns)

2) The Response of Solar Cells have been characterized up to 15 AMeV for ^{84}Kr:
 - **Simulation are able to reproduce Solar Cells signal**

3) **Long Irradiation Test**: Better behaviour of Solar Cells respect to Silicon Detector (for time response)
 - **VERY IMPORTANT FOR USE IN UHV!**

SOLAR CELLS ARE WELL SUITED FOR NECTAR project but also for experiments with heavy ions

FUTURE PROSPECTIVES

- Xe & Kr beams
- U beam
- Confirm experimentally our predictions
- Digitize Solar Cells signal
- Preamplifier system: Final optimization stage
 - explore Solar Cells possibilities as beam like residues detectors
Thank you for your work
Thank you for your attention ...

*This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715).
Backup Slides
E809 experiment (March 2021) - RESULTS

PRELIMINARY RESULTS

SOLAR CELLS Interaction

CURRENT (A)

TRANSIENT TIME (s)

84-Kr (5 AMeV)

84-Kr (15 AMeV)

POTENTIAL DISTORTION

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021
E809 experiment (March 2021) - RESULTS

PRELIMINARY RESULTS

SOLAR CELLS Interaction

84-Kr (5 AMeV)

84-Kr (15 AMeV)

200 µm

CURRENT (A)

TRANSIENT TIME (s)

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021
3. Simulation

- 1) 84-Kr 3 AMeV
- 2) 84-Kr 5 AMeV
- 3) 84-Kr 7 AMeV
- 4) 84-Kr 10 AMeV
- 5) 84-Kr 15 AMeV

ATLAS Silvaco code

PRELIMINARY RESULTS
4 – Irradiation

- Silicon Detector
 - Before irradiation: \(\sim 7.885 \times 10^6 \text{ p/cm}^2 \)
 - After irradiation: \(\sim 32 \times 10^6 \text{ p/cm}^2 \)

- 10x10 mm\(^2\) - Silicon Solar Cell

\[\text{84} \ \text{Kr beam at 15 AMeV} \]

\[\sim 7.885 \times 10^6 \text{ p/cm}^2 \quad \text{before irradiation} \]

\[\sim 32 \times 10^6 \text{ p/cm}^2 \]
Solar Cells: Ge 20x20 mm² \rightarrow rate 5 KHz

Amplitude Spectra as function of real time

- Fast Amplitude decrease

~5h40 of irradiation
Amplitude & Time Spectra before and after the irradiation

Solar Cells: Ge 20x20 mm² ----> rate 5 KHz

Measurements realized at low rate ~ 50 Hz
Solar Cells: Ge 20x20 mm2 ----> rate 5 KHz

Time constant, no spread in the distribution

Time Spectra as function of real time

Entries: 4.1428668e+07
Mean x: 1.036e+04
Mean y: 2714
Std Dev x: 5979
Std Dev y: 105.3

Time (s) ~5h40 of irradiation
Cells 10x10 Si Amplitude

Energy (AMeV)

Amplitude (mV)
Solar Cells

20x20 mm²
Solar Cells

10x10 mm²
Solar Cells

2 columns coupled

definition zone (1 mm)

Inner hole
SOLAR CELL

- One or more p-n junction, different composition and substrate types

- **Low resistivity silicon of high impurity concentration** (0.1-100 Ω · cm) which has a significant impact on the cell properties:
 - a narrow depletion region (below 1 μm)
 - a huge capacitance C (tens of nF/cm)

Worst device for the detection of light charged particles............