NECTAR project

Response of solar cells to heavy ions at energies close to 10 AMeV at GANIL

M. Sguazzin¹, J.C. Thomas², J. Pibernat¹, B. Jurado¹, J. Michaud¹, J. Swartz¹, B. Jacquot², J. Giovinazzo¹, B. Thomas¹, P. Alfaurt¹, T. Chiron¹

1 Centre d'Etudes Nucléaires de Bordeaux Gradignan (CENBG), CNRS/IN2P3, Gradignan, France 2 Grand Accélérateur National d'Ions Lourds (GANIL), Caen, France

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CMIS

SOLAR CELL

Silicon - Solar Cells (Earth Solar Panels)

Germanium - Solar Cells (Space Applications)

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

NECTAR

CHARGE COLLECTION PROCESS IN SOLAR CELLS IS VERY DIFFERENT

Field-funneling effect

- C. Hsieh, et al., Electron Device Lett. IEEE 2 (1981) 103–105
- F.B. McLean, et al., IEEE Trans. Nucl. Sci. 29 (1982) 2017–2023
- G.C. Messenger, et al., IEEE Trans. Nucl. Sci. 29 (6) (1982) 2024–2031

NECTAR

Main Advantages:

1) Energy (1-2%) and time (few ns) resolution

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

Main Advantages:

1) Energy (1-2%) and time (few ns) resolution

2) Better radiation resistance

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

Solar Cells appear a very interesting alternative to Silicons detector for Heavy ions at energies between 1 and 10 AMeV.

But...

high capacitance $(40 \frac{nF}{cm^2}, 1000 \text{ times larger than Si detector}),$ increasing with Solar Cells surface

NECTAR Project:

Solar Cells as heavy ions detectors at energies E > 1 AMeV in UHV!

NO TEST HAS BEEN EVER PERFORMED!!

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

NECTAR

GANIL exploratory test experiments 2018

First irradiation experiment with Heavy ions above 1 AMeV!

CIME cyclotron was used to accelerate beams of:

- ⁸⁴*Kr* at 7, 10 AMeV
- ¹²⁹*Xe* at 10,13 AMeV

First results:

- Best performance: company Solar Made, 10x10 mm², <u>σ(E)/E=1.5% (RMS) and 3.6 ns</u> (FWHM).
- 2. Stable behavior during irradiation with 100 to few 10³ pps for a minute.

A. Henriques et al., Nucl. Instrum. Methods A 969 (2020) 163941.

GANIL Colloque Conference 2021

GANIL exploratory test experiments 2018

First irradiation experiment with Heavy ions above 1 AMeV!

CIME cyclotron was used to accelerate beams of:

- ⁸⁴*Kr* at 7, 10 AMeV
- ¹²⁹*Xe* at 10,13 AMeV

First results:

- Best performance: company Solar Made, 10x10 mm², <u>σ(E)/E=1.5% (RMS) and 3.6 ns</u> (FWHM).
- 2. Stable behavior during irradiation with 100 to few 10³ pps for a minute.

A. Henriques et al., Nucl. Instrum. Methods A 969 (2020) 163941.

New irradiation experiment (E809) : March 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴Kr at 5, 10, 15 AMeV

SPIRAL facility

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴Kr at 5, 10, 15 AMeV

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴Kr at 5, 10, 15 AMeV

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

• ⁸⁴Kr at 5, 10, 15 AMeV

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

CIME cyclotron was used to accelerate beams of:

• ⁸⁴*Kr* at 5, 10, 15 AMeV

MAIN IMPROVEMENTS

NECTAR

- Better intensity control
- Better alignment with respect to the incoming beam

Michele Sguazzin

GANIL Colloque Conference 2021

2. Characterization of solar cells linearity

Michele Sguazzin

GANIL Colloque Conference 2021

2. Characterization of solar cells linearity

Michele Sguazzin

GANIL Colloque Conference 2021

NECTAR

Conclusions & Future Prospectives

Solar Cells remain an interesting alternative to Silicon Detectors still for heavy ions beams at energies > 1 AMeV!!

Main Results:

- 1) <u>20x20 Ge substrate (Azurspace)</u> the best performances in Energy ($\sigma(E)/E=1.1\%$ RMS) and Time Resolution (2.6 ns)
- 2) The Response of Solar Cells have been characterized up to 15 AMeV for $\frac{84}{Kr}$:
 - Simulation are able to reproduce Solar Cells signal
- 3) Long Irradiation Test : Better behaviour of Solar Cells respect to Silicon Detector (for time response)
 - VERY IMPORTANT FOR USE IN UHV!

SOLAR CELLS ARE WELL SUITED FOR NECTAR project but also for experiments with heavy ions

FUT •	URE PROSPECTIVES Xe & Kr beams U beam	 Confirm experiment Digitize Solar Cells s Preamplifier system explore Solar Cells p residues 	tally our predictions ignal : Final optimization stage ossibilities as beam like s detectors
Michele Sguazzin		GANIL Colloque Conference 2021	September 28, 2021

.....Thank you for your work

Collaborators:

J.C. Thomas², **J. Pibernat¹**, **B. Jurado¹**, J. Michaud¹, J. Swartz¹, B. Jacquot² J. Giovinazzo¹, B. Thomas¹, P. Alfaurt¹, T. Chiron¹

Michele Sguazzin

GANIL Colloque Conference 2021

.....Thank you for your attention

*This work has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC-Advanced grant NECTAR, grant agreement No 884715).

Michele Sguazzin

GANIL Colloque Conference 2021

Backup Slides

Michele Sguazzin

Dottorato in Fisica 2019-2020

July 11, 2019

E809 experiment(March 2021) - RESULTS

Michele Sguazzin

GANIL Colloque Conference 2021

September 28, 2021

E809 experiment(March 2021) - RESULTS

Michele Sguazzin

GANIL Colloque Conference 2021

Amplitude Spectra as function of real time

• Solar Cells: Ge 20x20 mm2 ----> rate 5 KHz

Michele Sguazzin

GANIL Colloque Conference 2021

GANIL Colloque Conference 2021

Time Spectra as function of real time

• Solar Cells: Ge 20x20 mm2 ----> rate 5 KHz

Michele Sguazzin

GANIL Colloque Conference 2021

GANIL Colloque Conference 2021

Cells 10x10 Si Amplitude

Michele Sguazzin

GANIL Colloque Conference 2021

GANIL Colloque Conference 2021

SOLAR CELL

One or more p-n junction, different composition and substrate types

Low resistivity silicon of high impurity concentration (0.1-100 $\Omega \cdot cm$) which has a significant impact on the cell properties:

→ <u>a narrow depletion region (below 1 µm)</u> <u>a huge capacitance C (tens of nF/cm)</u>

Worst device for the detection of light charged particles.....

Michele Sguazzin

GANIL Colloque Conference 2021

Cells 10x10 Si Amplitude

Michele Sguazzin

GANIL Colloque Conference 2021

GANIL Colloque Conference 2021

GANIL Colloque Conference 2021

GANIL Colloque Conference 2021