Commissioning and recent achievements of ion beam purification devices under development at CENBG

Antoine de Roubin

28/09/2021

XXIInd Colloque GANIL – Antoine de Roubin

The DESIR hall

Three main setup categories

- β-decay spectroscopy
- Laser spectroscopy
- Mass spectrometry

To study

- Nuclear structure
- Astrophysics
- Weak interaction
- Application...

Ion beams from

- SPIRAL1 \rightarrow fragmentation
- $S^3 \rightarrow fusion$

Aim for high precision measurements

- High purity beam
 - We need to purify isobars (up to isomers)
- High quality beam
 - Low longitudinal and transverse emittance

SPIRAL1 transfer beam line

HRS, GPIB & PIPERADE

HRS (high resolution separator)

Towards high beam purity

- SHIRaC + HRS
 - Located in front of DESIR
 - SHIRaC → beam cooling + HRS → in-flight mass separation
- GPIB + PIPERADE
 - Located at the entrance of DESIR
 - GPIB delivers cooled ion bunches to the hall
 - PIPERADE: large isobarically pure ion bunches

HRS, GPIB and PIPERADE are being commissioned at CENBG

HRS, GPIB & PIPERADE at CENBG

A. de Roubin

HRS: High Resolution Separator

Lattice and elements :

- D : Two 90° *magnetic* dipoles (36° entrance/exit angles)
- MQ : Matching quadrupoles
- **FQ** : Focusing quadrupoles
- **FS** : Focusing sextupoles
- M : A multipole (up to 5th order)

Configuration: MQ-MQ-FS-FQ-D-M-D-FQ-FS-MQ-MQ

Main objective: Decrease isobaric contamination for high-intensity beams with a resolution $R = \frac{M}{\Delta M} \approx 20\ 000$ ISOLDE's HRS $\rightarrow R \approx 5000$

Requirements and constrains:

- Transmission efficiency close to 100 % for $R \approx 20\,000$ to provide mono-isobaric exotic beams
- Beam emittance $\varepsilon < 3\pi$ mm.mrad and $\Delta E < 1$ eV at 60 keV (beam emittance from RFQ cooler SHIRaC)

T. Kurtukian et al., Nucl. Instrum. Methods Phys. Res. B 317 (2013) 284-289

Colloque GANIL

28/09/2021

Current work: correction of aberrations with the multipole

Higher order aberrations will lead to distortions of the beam (spatial space or phase space)

Simulated emittance with second order aberration (COSY)

Measured emittance

Solution \rightarrow correction of the aberration with the multipole !

6

Current work: correction of aberrations with the multipole

2

2nd and 3rd order correction (higher order aberrations)

Colloque GANIL

HRS resolution

- Transfer functions of the spectrometer are identical for $\frac{\Delta M}{M}$ and $\frac{\Delta E}{E}$ ($\Delta E \rightarrow$ FWHM)
- We can estimate the resolution of the HRS by measuring two beams with close energy

More details on poster from J. Michaud !

J. Michaud et al., Proc. IPAC'21, to be published

Colloque GANIL

8

GPIB – General Purpose Ion Buncher

- ISCOOL mechanical design
 - Larger $r_0 = 20$ mm for high intensity beam
 - New development: increased U_{rf} up to 4 kV_{pp}
 - Frequency \rightarrow 220 kHz 2 MHz
- Control command → EPICS/Python based
- Homemade switches developed

Two operation modes:

- CW mode
 - Test and characterization with ³⁹K (+ ⁴¹K)
 - Beam cooling: $2.9(5)\pi$ mm.mrad @ 30 keV
 - Transmission $\rightarrow 80 \% @ 30 \text{ keV}$ 92 % @ 3 keV
- Bunching mode

M. Gerbaux et al., to be submitted

Bunching mode

Time-of-flight dispersion:

- 1 2 μs FWHM at 30 keV
- 0.5 0.7 μs FWHM at 3 keV
- Extraction potentials can still be optimized for better bunch compression

Energy dispersion

- $~~pprox~10~{
 m eV}$ in 10 ms cooling time
- Cooling sequence optimization in progress

Next steps:

- Transverse emittance measurements at 3 keV and 30 keV
- Longitudinal emittance measurements

Longitudinal emittance test measurement

M. Gerbaux et al., to be submitted

Colloque GANIL

PIPERADE double Penning trap:

- 7 T superconducting magnet
- Homemade switches
- Control command
 - EPICS/Python

First trap – Purification trap

- Beam purification
- Large inner radius

٠

- Minimize space charge effects
 - > 10⁴ ions per bunch

Second trap – Measurement trap

- Accumulation
- Isomeric purification
- Mass measurements

Buffer gas cooling technique

- Gas filled purification trap
- Separation \rightarrow 2 main steps:
 - 1st bring all ions off axis
 - Magnetron excitation
 - 2nd center back only the ions of interest
 - Cyclotron excitation
- Cooling

First buffer gas cooling achieved with PIPERADE !!!!

Buffer gas cooling technique

- Technique tested on
 - ³⁹K
 - ⁴⁰Ca
 - ⁴¹K

• Resolving power of 10⁵ reached

On-going studies to improve the resolution and the re-centering efficiency

P. Ascher et al., Nucl. Instrum. Methods Phys. Res. A, accepted for publication

Buffer gas cooling technique

1st rough mass measurement of ⁴¹K vs ³⁹K

- ME(⁴¹K) = -35523 ± 3 keV
- Deviation of ≈ 40 keV with the AME
- Study of systematics ongoing

See poster from M. Flayol !

Next steps:

- Mass measurements with the 2nd trap (first ion trapping achieved during summer)
- Implementation of PI-ICR

Thank you for your attention

Local team

Physicists

P. Ascher, B. Blank, M. Gerbaux, S. Grévy, T. Kurtukian

Instrumentation

P. Alfaurt, A. Balana, L. Daudin, B. Lachacinski, S. Leblanc, L. Serani

Mechanics

S. Perard

PostDocs

A. Husson, J. Michaud, A. de Roubin

PhD

M. Flayol, M. Hukkanen

- T. Kurtukian et al., Nucl. Instrum. Methods Phys. Res. B 317 (2013) 284-289
- P. Ascher, et al., EPJ Web of Conf. 66 (2014) 537 11002
- E. M. Ramirez, et al., 539 Nucl. Instrum. Methods Phys. Res. B 376 (2016) 298
- P. Ascher et al., Nucl. Instrum. Methods Phys. Res. A, accepted for publication
- J. Michaud et al., Proc. IPAC'21, to be published
- M. Gerbaux et al., to be submitted

15

HRS, GPIB & PIPERADE

Towards high beam purity

- HRS
 - Beam emittance reduction via SHIRaC
 - Located in front of DESIR
 - Resolving power of $\approx 10^{4}$
- GPIB + PIPERADE
 - Located at the entrance of DESIR
 - GPIB delivers ion bunches to the hall
 - Resolving power higher than 10⁶

All are being commissioned at CENBG

17

(quadrupolar excitation)

- Confinement in 3D:
- 3 independent motions
- 3 eigen frequencies

Axial motion $\omega_z \sim 100$ kHz Modified cyclotron motion

 $\omega_+ \sim$ 10 MHz

 $\omega_{-} \sim kHz$

Magnetron motion

Mass measurement:

- Scan around ω_c
- Extraction of ions
- Measurement of their ToF

PIPERADE

Current work: correction of aberrations with the multipole

DECAPOLE

0

n

Pow

UN G

UN

UN 🥥

UN

UN (

UN

UN

UN

UN G

UN 🥥

Colloque GANIL

