

Correlation measurements in nuclear beta decay

- General context & motivations
- Measurements of the beta neutrino angular correlation parameter
- Ft-values in $0+\rightarrow 0+$ transitions
- New prospects: the shape of the beta energy spectrum ightarrow

Search for Physics beyond the Standard Model

Two complementary approaches:

The Fermi theory of nuclear beta decay

Fermi Basic hypothesis:

Analogy with Electro-magnetism: Hamiltonian product of hadron and lepton currents

$$H = g_F \sum_{i} (\bar{\psi_p} \mathcal{O}_i \psi_n) (\bar{\psi_e} \mathcal{O}_i (C_i + C'_i \gamma_5) \psi_\nu) + h.c.$$

Fermi Coupling Constant
(weak interaction strength) Hadron current Lepton current

Lorentz invariance :

 \mathcal{O}_i \longrightarrow 4 possible effective currents: Scalar, Vector, Axial-vector, Tensor (Dirac γ -matrix operators)

 $C_{i} \& C_{i}' = S, V, A, T$ 8 coupling constants giving their relative strength (Wilson coefficients) $H \text{ even} \qquad H \text{ odd} \qquad C_{S}, C_{V}, C_{A}, C_{T}, C_{S}', C_{V}', C_{A}', C_{T} \rightarrow \text{ have to be determined experimentally}$ part

Wilson coefficients in the SM

Simplifications from hadronic part of Hamiltonian:

- For Fermi transitions: only Vector & Scalar currents (no spin involved)
- For GT transitions only Axial & Tensor currents (spin change involved)

- Assumed in the Standard Model (from previous experiments):
 - No time-reversal symmetry violation
- $\rightarrow C_i \& C'_i are all real$
- Parity violation is maximal with only left handed-neutrinos $\rightarrow C_i = C'_i$
- No observation of exotic Scalar or Tensor currents
- $\Rightarrow C_S = C'_S = C_T = C'_T = 0$

 $C_V = C'_V = 1$ (For Fermi transitions) $C_A = C'_A \simeq -1.25$ (For GT transitions)

Present experimental constraints on exotic couplings (not so tight):

(A. Falkowsky et. Al. JHEP 04(2021)126, from nuclear & neutron decay)

• Scenario with only left-handed neutrinos: $|C_S/C_V| \sim |C_T/C_A| < 0.1\%$ $(C_i = C'_i) \rightarrow$ Sensitive to masses of order 10-100 TeV

(Beyond reach of LHC)

• Scenario with right-handed neutrinos: $|C_S/C_V| < 5\%$ $|C_T/C_A| < 7\%$ $(C_i = -C'_i)$ \rightarrow Sensitive to masses of order 100 GeV -1 TeV

(Within reach of LHC)

- Complementarity with high energy physics
- Real potential for new physics discovery

• The probability rate function of beta decay:

$$\begin{split} \omega(\langle \mathbf{J} \rangle | E_e, \, \Omega_e, \, \Omega_v) \, \mathrm{d}E_e \, \mathrm{d}\Omega_e \, \mathrm{d}\Omega_v &= \frac{F(\pm Z, \, E_e)}{(2\pi)^5} p_e E_e (E_0 - E_e)^2 \, \mathrm{d}E_e \, \mathrm{d}\Omega_e \, \mathrm{d}\Omega_v \\ &\times \frac{1}{2} \xi \left\{ 1 + a \frac{\mathbf{p}_e \cdot \mathbf{p}_v}{E_e E_v} + b \frac{m}{E_e} + \frac{\langle \mathbf{J} \rangle}{J} \cdot \left[A \frac{\mathbf{p}_e}{E_e} + B \frac{\mathbf{p}_v}{E_v} + D \frac{\mathbf{p}_e \times \mathbf{p}_v}{E_e E_v} \right] \right\} \\ & \text{nuclear transition} \\ & \text{matrix elements} \quad \begin{array}{c} \text{Correlation parameters } a, b, A, B, and D \\ \text{(correlation between spin \& momenta of particles)} \end{array}$$

The probability rate function of beta decay:

• With non polarized nuclei:

• In pure Fermi & pure GT transitions $\rightarrow a \& b$ are independent of nuclear matrix elements

2) Measurements of the *beta-neutrino* angular correlation parameter $a_{\beta\nu}$

Measurements of $a_{\beta \nu}$

Decay probability rate proportional to:

$$\propto \left[1 + a \frac{p_e p_v}{E_e E_v} \cos(\theta)\right]$$

• Preferred $\beta - \nu$ angle: $\theta = 180^{\circ}$

- $a_{\beta v} = 1 \text{ (max)}$
- Preferred $\beta \nu$ angle: $\theta = 0^{\circ}$

- Maximum recoil energy Minimum recoil energy $a_{\beta\nu}$ extracted from recoil energy distribution
- Experimental difficulty: recoil ion energy KE_{RI} ~ 100 eV
 - Use of Traps & TOF techniques
 - Use of secondary particle emission *p*, *α*, *γ* ('Doppler shift measurement')

Ρ

• $a_{\beta\nu}$ = -1 (min)

Sensitivity to *a*, *b* and to new physics

If b ≠ 0 (LH neutrinos scenario)

Decay probability rate proportional to $P \propto \left[1 + a \frac{p_e p_v}{E_e E_v} \cos(\theta) + b \frac{m_e}{E_e}\right]$

Recoil ion energy measurement gives access to: $\tilde{a} \approx a - kb$

Sensitivity to both *a* & *b*

Also impacts recoil distribution

RH neutrinos scenario $\rightarrow \tilde{a} = a$

LH neutrinos scenario $ightarrow ilde{a} pprox a_{SM}$ - kb

k gives the sensitivity to *b* must be determined by means of simulations (depends on experimental technique & geometry)

Measurements of $a_{\beta\nu}$

Present limits:

Parent	type	Technique	Team	ã		Year
⁶ He	GT	Spectro	ORNL	-0.3308(30)	0.9%	1963
³² Ar	F	p recoil	UW, ISOLDE	0.9989(52)(39)	0.65%	1999
^{38m} K	F	MOT	SFU, TRIUMF	0.9981(30)(34)	0.45%	2004
²¹ Na	Μ	MOT	Berkeley, BNL	0.5502(38)(46)	1.1%	2008
⁶ He	GT	Paul Trap	LPCC, GANIL	-0.3335(73)(75)	3,1%	2011
⁸ Li	GT	Paul Trap	ANL	-0.3342(26)(29)	1.2%	2015

GT: ~ 1% precision F: ~ 0.5% precision

Ongoing & future projects:

⁸ Li	GT	Paul Trap	ANL	-0.3346(9)(24) 0.7%	
⁶ He	GT	MOT	ANL,CENPA, LPCC	-0.3268(46)(41) 1.9%	Last results discussed in this talk
⁶ He	GT	Paul Trap	LPCC, GANIL	Analysis almost completed (~1%)	(not published vet)
³² Ar	F & GT	p recoil	WISArD	In preparation (~0.1%, test at 3.6%)	
³⁵ Ar	Μ	Paul Trap	LPCC, GANIL	Analysis under way (~1%)	
¹⁹ Ne	Μ	Paul Trap	LPCC, GANIL	Analysis under way (~3%)	
⁶ He	GT	EIBT	Weizman, SOREQ	In preparation (~0.1%)	
Ne	Μ	MOT	Weizman, SOREQ	In preparation (~0.1%)	All new projects aim at 0.1% precision level
³² Ar	F & GT	Penning	Texas A&M	In preparation (~0.1%)	
^{38m} K	F	MOT	SFU, TRIUMF	In preparation (~0.1%)	

Pure Fermi transition: WISArD experiment (ISOLDE)

Principle: study proton-energy shift in $0+\rightarrow 0+$ transition of ³²Ar (inspired from Adelberger 1999)

- Measure the proton energy shift for same & opposite emission directions
- ΔE_{p} is a linear function of $\tilde{a}_{\beta v}$
- High sensitivity to $\tilde{a}_{\beta\nu}$ (x 2.5 vs Adelberger99)
- Independent of *p* detector response function
- Independent of *p* peak intrinsic shape

Test experiment @ ISOLDE (1.5 days, 2018) Average E_p shift: $\Delta E_p = 4.49(3)$ keV (c) Down detector **Test Setup** 400 singles (x0.5) singles (x0.5) coincidence coincidences

Proton energy (keV)

 $\tilde{a}_{\beta\nu}^{F} = 1.007(32)_{(stat)}(25)_{(syst)}$ (3.6%) extremely promising! 300 200 Counts 200 V. Araujo-Escalona et al., PRC 2020 35keV 100 **FWHM** 3240 3260 3280 3300 3320 3380 3400

3340

3360

Proton energy (keV)

Pure Fermi transition: WISArD experiment (ISOLDE)

WISArD status: next experiment accepted (1st run in October 2021 & 2^d run in 2022)

New Silicon detectors (8 x 6 channels) with cooling system

High resolution preamps (3.5 keV FWHM)

Resolution <10 keV FWHM (alpha)
 Gain of factor ~ 8 in sensitivity

- Negligible dead-layer effect (60±4nm)
- Precise beta detector calibration (10-30keV) range
- Dedicated backscattering measurements
 - x 10 thinner catcher

Main sources of systematic error under control

- goal of 0.1-0.2 % uncertainty on \tilde{a} achievable at ISOLDE with new setup
- Long term: Other nuclei (test theoretical corrections, higher sensitivity)
 - Other facilities ? → DESIR

Pure GT transition: LPCTrap @ GANIL

• TOF measurement of ⁶Li recoil in ⁶He⁺ beta decay

(2005-2014)

- Decay source confined in a transparent Paul trap (beam preparation on LIRAT-SPIRAL1)
- β recoil ion detection in coincidence
- $a_{\beta \nu}$ deduced from recoil time-of-flight distribution

beam

beta detector (DSSSD + scintillator)

TOF tube Position sensitive MCP detector

Analysis for high stat runs still being completed

Difficulty: the measurement rely on TOF shape analysis

TOF very sensitive to:

- Trapped ion cloud shape & temperature
- Relative position of cloud & detector
- Scattering of β particles

- Complex simulation & analysis tools
- Perfect agreement for all observables

We are working on that for a long long time...

Pure GT transition: LPCTrap @ GANIL

• Fit of the TOF spectrum

Preliminary result:

$ ilde{a}^{GT}_{_{eta v}}$	= -0.33??(15) _(stat) (30) _(syst)	(1.0%)
----------------------------	--	--------

Source of syst.	Uncertainty	∆a/a (%)	
Cloud temperature	<10K	<0,5	
Beta Scattering	10%	0,5	
TOF _{T0}	0.35ns	0,4	
TDC	1,00E-04	0,25	
VRF	1%	0,2	
E_{β} calibration	-	0,15	
VIRD	2V	0,03	
BKG	-	0,03	
total		0,88	

To be done:

- Include corrections (radiative & recoil)
- Run more stat in simulations

Very satisfactory after many years spent on this analysis...

GT transitions: other recent measurements

New constraints from these experiments:

		Pure	Fermi	Pure Gamow-Teller		
		WISArD	Adelberger	LPCTrap	ANL Trap	Seattle MOT
Right-	$\Delta a/a \approx \Delta \tilde{a}/\tilde{a}$	0.2%	0.65%	1.0%	0.7%	1.9%
neutrinos $C_i = -C_i$ '	$ C_S/C_V $ or $ C_T/C_A $	(3%)	6%	7%	6%	10%

3) Other way to measure *b*: *Ft*-values in $0 \rightarrow 0 +$ transitions

$\mathcal{F}t$ -values in 0+ \rightarrow 0+ pure Fermi transitions

- Used to test CVC hypothesis & extract Vud (talk by Nadezda Smirnova on Wednesday)
- If one accounts for a non-zero Fierz term b_F the $\mathcal{F}t$ -value depends on $\langle E_{\beta} \rangle$

$\mathcal{F}t$ -values in 0+ \rightarrow 0+ pure Fermi transitions

Another experiment was performed at ALTO with nu-ball (analysis ongoing)

Any improvement for ¹⁰C branching ratio will result in better constraints on b_F Very interesting case for DESIR

4) New prospects: measurements of the shape of the beta energy spectrum

Difficulty:

 β backscattering on detector surface

X. Fléchard

b-STILED project @ GANIL

(b: Search for Tensor Interactions in nucLear bEta Decay)

- Goal: measure b_{GT} in ⁶He beta decay with a precision better than 4 10⁻³ (phase 1) (direct improvement on present constraints from nuclear beta decay) <sup>M. Gonzalez-Alonso, O.N.C., N. Severijns, Prog. Part. Nucl. Phys. 104 (2019) 165
 </sup>
- Technique proposed: use the 4Pi calorimetry technique at both low and high energy

- No beam induced background
- Movable detector \rightarrow 4Pi

- YAP (27ns) \rightarrow very linear response \rightarrow good sensitivity to γ
- Plastic (2ns) as veto

enri Becquere

• ²⁴¹Am for gain monitoring

Proposal was accepted in 2020 by the GANIL PAC (E815S_20)

- Similar to NSCL ²⁰F experiment
- Hole to reduce escape of Bremsstrahlung radiation

Ist run at low energy on GANIL LIRAT beam line (June 2021)

2s implantation

10s measurement

Stat: ~4.5 10⁷ events (different intensities & PM gain)

- T_{1/2} with ~2 10⁻⁴ relative precision analysis ongoing (M. Kanafani Thesis)
- $\Delta b_{GT(stat)} \sim 2 \ 10^{-3}$ fine analysis to come (M. Kanafani Thesis)

"Zero order" analysis shows no obvious problem

• Next step: 2d run at high energy on LISE in 2022

→ Offer for 2-year postdoc position (CNRS portal)

- Depending on results for both experiments:
 - choose one technique
 - push it with precision goal of 10⁻³ on b_{GT}

For exotic couplings involving RH neutrinos :

Measurements of \tilde{a} remain unique (strong potential for the WISArD experiment). But real breakthroughs (x10 on constraints) seem out of reach when considering the quadratic dependence of experimental observables on such couplings.

For exotic couplings involving LH neutrinos:

Measurements of \tilde{a} with high sensitivity to b can still play an important role (again, strong potential) for the WISArD experiment).

Ft-values for light nuclei (¹⁰C) should also be improved, to provide direct impact for constraints on Scalar currents.

For Tensor currents, 4pi beta calorimetry (b-STILED) seems to be a very promising technique. It will be very interesting, in the coming few years, to see how far we can go with this technique at GANIL, with both low and high energy beams.

Backup slides

XXIInd COLLOQUE GANIL, Autrans-Méaudre en Vercors, 30 October 2021

Leads to different forms of currents:

\longrightarrow Quantum mechanical operators (Dirac γ -matrix)

To respect Lorentz invariance: *H* must be a Scalar or a Pseudoscalar

> ~ same operators in Hadron and Lepton current

$$\begin{split} H_i^{even} &= g_i (\bar{\psi_p} \, \mathcal{O}_i \, \psi_n) (\bar{\psi_e} \, \mathcal{O}_i \, \psi_\nu) + h.c. \quad \text{(scalar)} \\ H_i^{odd} &= g_i' (\bar{\psi_p} \, \mathcal{O}_i \, \psi_n) (\bar{\psi_e} \, \mathcal{O}_i \gamma_5 \, \psi_\nu) + h.c. \quad \text{(pseudoscalar)} \\ \text{With:} \qquad g_i &= g_F C_i \qquad g_i' = g_F C_i' \qquad i = S, V, T, A, P \end{split}$$

()

To respect Lorentz invariance

H must be a Scalar or a Pseudoscalar:

same operators in Hadron and Lepton current

 $H_i^{even} = g_i(\bar{\psi}_p \,\mathcal{O}_i \,\psi_n)(\bar{\psi}_e \,\mathcal{O}_i \,\psi_\nu) + h.c. \quad \text{(scalar)}$ $H_i^{odd} = g_i^{\flat}(\bar{\psi}_p \,\mathcal{O}_i \,\psi_n)(\bar{\psi}_e \,\mathcal{O}_i \gamma_5 \,\psi_\nu) + h.c. \quad \text{(pseudoscalar)} \implies \text{For parity violation}$

With: $g_i = g_F C_i$ $g'_i = g_F C'_i$ i = S, V, T, A, P

The generalized form is then:

$$H = g_F \sum_{i} \left(\bar{\psi_p} \mathcal{O}_i \psi_n \right) \left(\bar{\psi_e} \mathcal{O}_i \left(C_i + C'_i \gamma_5 \right) \psi_\nu \right) + h.c.$$

In the NRA approximation, the Dirac γ -matrix for nucleons can be simplified for $(\bar{\psi}_p \, \mathcal{O}_i \, \psi_n)$ We end up with :

- 4 coupling constants (Wilson coefficients) for Fermi transitions: C_V, C'_V, C_S, C'_S
- 4 coupling constants for GT transitions: C_A , C'_A , C_T , C'_T

whose strengths have to be determined experimentally...

Approximation for the hadronic terms:

The nucleons are considered as non relativistic (NRA, for non relativistic approximation)

In the NRA approximation, the Dirac γ -matrix for nucleons can be simplified for $\mathcal{O}_i \psi_n$

It can be shown that:

For i=P: $\mathcal{O}_i = 0$ \rightarrow no pseudoscalar termFor i=S: $\mathcal{O}_i = 1$ \rightarrow no spin involvedV & S currents
For Fermi transitions
With $\Delta I = 0$ For i=V: $\mathcal{O}_i = \gamma^0$ \rightarrow no spin involved $With \Delta I = 0$ For i=A & T: $\mathcal{O}_i = f(\sigma)$
(Pauli Matrix) \rightarrow spin involvedA & T currents
For Gamow-Teller (GT)
With $\Delta I = 1$

4 possible coupling constants for Fermi transitions: C_V, C'_V, C_S, C'_S

4 possible coupling constants for GT transitions: C_A , C'_A , C_T , C'_T

What link with experimental measurements?

One can "solve" the Hamiltonian to express the decay rate as a function of all relevant observables of the system: $\vec{I}, \vec{\sigma}, \vec{p_e}, \vec{p_v}$ Nuclear Spin vector of Leptons polarization β particle momentum

If one integrate the Hamiltonian with the γ -matrix we get:

What link with experimental measurements?

All the correlation coefficients can be expressed as a function of the couplings C_V , C'_V , C_S , C'_S , C_A , C_A , C_T , C'_T

For example, for *a* & *b*:

$$a\xi = |M_F|^2 \left[-|C_S|^2 + |C_V|^2 - |C_S'|^2 + |C_V'|^2 \mp 2 \frac{\alpha Zm}{p_e} Im \left(C_S C_V^* + C_S' C_V'^* \right) \right] \\ + \frac{|M_{GT}|^2}{3} \left[|C_T|^2 - |C_A|^2 + |C_T'|^2 - |C_A'|^2 \pm 2 \frac{\alpha Zm}{p_e} Im \left(C_T C_A^* + C_T' C_A'^* \right) \right] \\ b\xi = \pm 2\gamma Re \left[|M_F|^2 \left(C_S C_V^* + C_S' C_V'^* \right) \\ + |M_{GT}|^2 \left(C_T C_A^* + C_T' C_A'^* \right) \right]$$

With
$$\xi = |M_F|^2 \left(|C_S|^2 + |C_V|^2 + |C'_S|^2 + |C'_V|^2 \right) + |M_{GT}|^2 \left(|C_T|^2 + |C_A|^2 + |C'_T|^2 + |C'_A|^2 \right)$$

(Where M_F & M_{GT} are the Fermi & Gamow-Teller nuclear Matrix elements)

Measurements of $a_{\beta \nu}$

beta neutrino angular correlation is linked to the leptons helicity :

- \circ SM currents (V & A) \rightarrow lead to opposite helicity of the two leptons
- \circ NP currents (S & T) \rightarrow lead to same helicity of the two leptons

Pure Fermi transition: WISArD experiment (ISOLDE)

Inspired from the proton-pic broadening experiment in 32Ar decay (Adelberger 1999):

Pure GT transition: LPCTrap @ GANIL

Present status: finally getting there!

(Mostly thanks to the simulation tool CLOUDA and refined analysis)

Comparison experiment vs simulation (residuals)

No more mismatch Exp vs Sim...

Example: weak magnetism in ⁶He decay

- The WM form factor, b_{WM} , can be calculated with sufficient accuracy using the *strong form* of *CVC* applied to an isospin triplet.
- The WM contributes to all terms of the spectrum shape factor

 $\frac{0^{+} -1}{\beta^{-}} \sqrt{\frac{M_{1}}{\beta^{+}}} \sqrt{\beta^{+}}$ ⁶He ⁶Li ⁶Be

 $S(W) = (1 + C_0 + C_1 W + C_{-1}/W)$

B.R. Holstein and S.B. Treiman, PRC 3 (1971) 1921

$$C_{0} = \frac{2}{3} \frac{W_{0}}{M} \left(1 + \frac{b_{WM}}{c} \right) = -1.234(14) \%$$

$$C_{1} = \frac{2}{3M} \left(5 + 2 \frac{b_{WM}}{c} \right) = 0.6502(69) \% / \text{MeV}$$

$$C_{-1} = -\frac{2m^{2}}{3M} \left(1 + \frac{b_{WM}}{c} \right) = -0.0802(9) \% \times \text{MeV}$$

$$b_{WM}^{CVC} = 68.22 \pm 0.79$$
 $c = g_A | M_{GT}$

EAP-ISOL Meeting, September 2021 <u>naviliat@lpccaen.in2p3.fr</u>

Theoretical description of the spectrum

For ⁶He decay, theoretical corrections for the description of the beta spectrum are known with sufficient accuracy.

Source	$\Delta \boldsymbol{b_{GT}}$
Nuclear charge radius of ⁶ Li	4.6×10^{-5}
End-point energy of the transition	1.8×10^{-4}
Weak magnetism form factor	5.7×10^{-4}
Induced tensor form factor	1.9×10^{-5}
Total theoretical uncertainty	6.0×10 ⁻⁴

$$N(E) \propto (1+\eta)pE(E-E_0)^2 \left(1+\frac{m}{E}b_{GT}\right)$$

Many projects / techniques under development worldwide

Project 8 @ Uni. Washington

Based on cyclotron radiation measurement of single beta (tritium for v mass, and ⁶He for *b*) Phys. Rev. Lett. 114, 162501 (2015) Under development

782

miniBETA @ KU Leuven

multi-wire drift chamber + scint (later DSSSD) Under development

• 114In @ WISArD

Beta particle confinement in strong B-field Under development

• 6He & 20F @ NSCL

Fragment implantation in the core of The detection volume (no backscattering)

Courtesy of O. Naviliat-Cuncic

Detector developments

Phoswich configuration

Use pulse shape discrimination on signals sampled by the digital DAQ. For gain drift monitoring, use ²⁴¹Am source and LED coupled to the plastic scintillator surrounding the beta detector.

Exotic currents beyond *V-A* theory: status

- Best constraints from "b", but "a" adds limits... ("b" unsensitive to right-handed v !)
- In green: constraints from LHC (CMS data) Cirigliano et al PPNP71 (2013) Thanks to EFT! González-Alonso et al PPNP104 (2019)

> Precision level at 10⁻³ needed to compete with LHC

10 May 2021