

- 1. The NFS facility
- 2. First neutron spectra measured at NFS
- 3. First experiments

X. Ledoux on behalf of the NFS collaboration

1. The NFS facility

2. First neutron spectra measured at NFS

3. First experiments

- Pulsed neutron beam (1-40 MeV)
- Continuous spectrum : d + thick converter
- QMN spectra : p + thin converter
- Irradiation capability in neutron and ion induced reactions
- High average flux in the 1-40 MeV range
- Good energy resolution

Physics case

- Fundamental physics
- Astrophysics
- New generation of reactor
- Fusion technology
- Radioisotopes production for medical applications
- □ Biology (cells irradiation..)
- Development and characterization of new detectors
- Study of the single-event upsets

NFS: The converter room

NFS: The TOF area

Continuous spectrum E_{max} = 40 MeV , <E> = 14 MeV

40 MeV d + Be at 50 µA

Rotating converter thick target C or B (8mm) P< 2 kW

Quasi-monoenergetic spectrum $E_n = up \text{ to } 31 \text{ MeV}$

p + Li (1,5mm) or Be (0,5 mm) at 20 µA

XXIInd colloque Ganil, 26 sep - 1 oct 2021

1. The NFS facility

- 2. First neutron spectra measured at NFS
- 3. First experiments

- December 2019 : First proton beam at 33 MeV in the converter cave
 - Neutron production on the Faraday Cup CF11
 - Cu(p,*) and Fe(p,*) reaction cross-section measurement by activation technique sample
- □ September 2020 to December 2020: proton beam
 - First quasi-mono-energetic neutron beam: 33 MeV p + Li and Be
 - Continuous neutron beam 31,9 MeV p + Be (8 mm)
 - o Flux and spectrum measurement
 - o Thermal tests on rotating converter
 - Transmission measurement on Carbon
 - o Test of the MEDLEY detector
- July 2020: First He-4 beam
 - o Thin converter
 - \circ Cu(α ,*) and Fe(α ,*) reaction cross-section measurement by activation
- September 2021: First deuteron beam
 - Thin and thick converter
 - LOI-9 : test for (n,xn') reactions (IPHC)
 - Neutron background spectra measurement with Bonner spheres (IRSN)

Detectors based on liquid scintillator EJ309

Neutron spectrum and flux measurement by the TOF technique

- \square n- γ discrimination by pulse shape analysis
- □ EJ309 cell (2 inches in diameter, 3 inches in length)

□ Placed in the beam pipe downstream of the rotating converter (15 to 30 m)

□ Adaptation of the SCINFUL code:

- Light response of EJ309 included
- Efficiency determination

Protons @ 31.9 MeV (2)

X. Ledoux, et al. Eur. Phys. J. A, 57, 257 (2021)

p + Li E> 28,5 MeV

NFS 31,9 MeV : 1,77^E9 n/sr/µC Uno 32 MeV : 1,88^E9 n/sr/µC Batty 30 MeV : 1,17^E9 n/sr/µC

p + Cu Yield at 0° (E>4 MeV):

Nakamura 30 MeV : 2,68e9 n/sr/µC

NFS 31,9 MeV : 2,27 e 9 n/sr/ μ C

NFS 20,0 MeV : 4,12e8 n/sr/µC

NFS 10,0 MeV : 1,12e7 n/sr/ μ C

Good agreement between published data and NFS measurements

Deuteron beam @ 22 MeV

Measured with EJ309 and Flight path of 30,86 m

 $\sigma_T = -\frac{1}{nl} \ln \frac{R_i - B_i}{R_o - B_o}.$

- Transmission measurement with Carbon samples (2, 4 and 6 cm thick)
- Total cross-section reaction measurement
- NFS Energy resolution estimation

- 1. The NFS facility
- 2. First neutron spectra measured at NFS
- 3. First experiments

- 9 experiences submitted to the PAC \rightarrow 7 accepted

NUM	Title	Spokesperson	UT Allocated
E799	Excitation functions of short-lived isotopes in proton induced reactions on ^{nat} Fe	E. Simeckova, NPI, Rez	5
E800	LIONS - Light-Ion Production Studies with Medley at the NFS facility	A.V. Prokofiev, Uppsala University	17
E802	GARIC - Gas production In Chromium by neutrons	A.V. Prokofiev, Uppsala University	21
E804	Measurement of fission cross sections standards relative to elastic n-p scattering at neutron energies 1- 40 MeV	D. Tarrio, Uppsala University	31
E807	Study of the (n,xn) and (n,f) reaction for U238	G. Bélier, CEA-DAM	12
E811	Study of the (n,alpha) reactions of interest for nuclear reactors - the SCALP Project	F. R. Lecolley, lpc Caen	12
E814	235U Fission fragment study with FALSTAFF at NFS	D. Doré, CEA/IRFU/DPhN	11

•3 Letters of Intents

NUM	Title	Spokesperson
Loi 5	(n,n'g) reactions at NFS: a new probe to study the pygmy dipole resonance	M. Vandebrouck, CEA/IRFU/DPhN
Loi 7	New Judicious Experiments for Dark sectors Investigations at SPIRAL2	B. Bastin, GANIL
Loi 9	(n,xn g) reaction cross sections measurements for nuclear energy applications	M. Kerveno, CNRS/ PHC

E799: Excitation functions of short-lived isotopes in proton-induced reactions on ^{nat}Fe

Spokesperson : E. Simeckova, NPI, Rez

Measurement of reaction cross-sections by activation technique :

- data for IFMIF facility design
- improvement of reaction model

Goal: measure the ^{58m}Co and ^{58g}Co alimentation

Commissioning : Irradiation station tested in December 2019

- \circ 33 MeV proton beam
- o 80 nA beam intensity
- Fe and Cu samples irradiated

• Good agreement between production cross section of 62Zn and recommended values ->proves the validity of the method

• natFe(p,x) 54mCo measure for the first time the production cross section of the short-lived isomeric state of 54Co

Proton energy (MeV)

10⁻¹

800: Ion Production Studies with Medley at the NFS facility

Neutron-Induced Light charged particles emission with MEDLEY

- 8 Si-Si-Csl telescopes
- Double-differential cross sections :
- Cancer therapy and dosimetry (H,C,O, Ca...)
- Radiation effects in microelectronics (Si, O)
- Energy applications: Gen-IV or fusion reactors (building materials, fuel, coolants, etc)

□ Setup tested in fall 2020 and September 2021

- High particle-identification capability
- Simultaneous measurement of charged-particles energy and neutron ToF (digital

• FIRST NFS by the end of this week

E807: Study of the (n,xn) and (n,f) reaction for U238

Spokesperson : G. Bélier, CEA-DAM-DIF

- (n,xn) reaction are important channels in the 5-50 MeV range
- (n,xn) cross-section measurement of actinide is very difficult:
 - radioactive sample
 - prompt neutron fission

Experimental technique :

- □ Veto fission (fission chamber)
- \Box 4 π neutron detector SCONE
- □ 6 MeV<En< 20 MeV

Next Step : ²³⁹Pu(n,2n)

volume 57 · number 8 · august · 202

- NFS produces intense beams of neutrons
 - o Quasi-mono-energetic and continuous spectra
 - o Neutron Yields in agreement with published data
 - Good time resolution
 - o Ion induced reaction cross-section measurement successfully tested
 - Test of (n,lcp) production with MEDLEY successful
 - Some of the results are published
- Next steps : perform the 4 experiments scheduled before the end of the year
- □ The NFS facility fulfil the expected characteristics

The European Physical Journal

□ But the accelerator still lacks reliability to achieve experiments in good conditions