Femtoscopic probes of jet-fragmentation mechanisms in INDRA and FAZIA campaigns at GANIL

Q. FABLE

Laboratoire des 2 Infinis de Toulouse - L2IT

INDRA-FAZIA collaboration
• **Context and motivations**
 The Equation of State of nuclear matter
 Heavy Ion Collisions at intermediate energies

• **INDRA-VAMOS : HIC peripheral collisions**
 Isospin transport
 Experimental setup
 Observation of isospin transport

• **Nuclear jets fragmentation**
 Ar+Ni INDRA data highlights
 Comparisons with models (BLOB)
 IMF-IMF correlation functions

• **Conclusion and outlooks**
The Equation of State of a nuclear system

- The EOS of a nuclear system is defined by its energy per nucleon: $\mathcal{E}(\rho, T, \delta)$

- The density dependence of the symmetry energy term $\mathcal{E}_{\text{sym}}(\rho, T)$ remains a major issue in modern nuclear physics:
 - describes the energetic cost of converting isospin symmetric matter into neutron matter;
 - constraints well established for $T=0K$ and $\rho=\rho_0$ by fitting with nuclear masses;
 - largely unknown as soon as we move away from normal density.

$\delta = (\rho_n - \rho_p) / \rho$
The Equation of State of a nuclear system

- The EOS of a nuclear system is defined by its energy per nucleon: $\epsilon(\rho, T, \delta)$
- The density dependence of the symmetry energy term $\epsilon_{\text{sym}}(\rho, T)$ remains a major issue in modern nuclear physics:
 - describes the energetic cost of converting isospin symmetric matter into neutron matter;
 - constraints well established for $T=0K$ and $\rho=\rho_0$ by fitting with nuclear masses;
 - largely unknown as soon as we move away from normal density.

Density dependance of ϵ_{sym}

- Taylor expansion:
 $$\epsilon(\rho, \delta) = \epsilon(\rho, \delta=0) + \epsilon_{\text{sym}}(\rho) \cdot \delta^2 + ...$$
- Ex. of parametrization:
 $$\epsilon_{\text{sym}}(\rho) = \frac{C_{\text{kin}}}{2} \left(\frac{\rho}{\rho_0} \right)^{2/3} + \frac{C_{\text{pot}}}{2} \left(\frac{\rho}{\rho_0} \right)^{\gamma}$$

- EOS « stiffness »
- Kinetic term (Fermi gaz)
- Nucleon-nucleon effective interaction term
Density dependance of ϵ_{sym}

- Taylor expansion:
 \[\delta = (\rho_n - \rho_p) / \rho \]
 \[\epsilon(\rho, \delta) = \epsilon(\rho, \delta = 0) + \epsilon_{sym}(\rho) \cdot \delta^2 + ... \]

- Ex. of parametrization:
 \[\epsilon_{sym}(\rho) = \frac{C_{kin}}{2} \left(\frac{\rho}{\rho_0} \right)^{2/3} + \frac{C_{pot}}{2} \left(\frac{\rho}{\rho_0} \right)^\gamma \]

 - Kinetic term (Fermi gaz)
 - Nucleon-nucleon effective interaction term

\[\text{EOS « stiffness »} \]

- $\epsilon_{sym}(\rho)$ largely unknown as soon as we move from ρ_0

- Essential information for understanding:
 → Structure of exotic nuclei and neutron skin;
 → Giant Dipole Resonances and Pygmy Dipole Resonances;
 → The dynamic of Heavy Ion Collisions

- ... but also stellar matter:
 → Supernova explosions mechanisms;
 → Cooling and composition of neutron stars.

Context and motivations: $\epsilon_{sym}(\rho, T)$

[2] M. Colonna et al., EPJA50:30
Heavy Ion Collisions

- Formation of exotic nuclei over a wide range of n/p asymmetry
- A tool to study transient states of nuclear matter over various ρ, P, T and J
- Relatively high E^*/A can be reached

Intermediate energies

- $15 \text{ AMeV} \leq E_{\text{inc}} \leq 100 \text{ AMeV}$
- Dissipative collisions
- Investigation of $\epsilon_{\text{sym}}(\rho)$ in the sub-saturation density regime → Domain expected from model calculations

Transport models

- Simulation of the whole dynamic evolution of the colliding system:
 → time evolution of the distributions of the nucleons;
 → consideration of their quantum features.
- Allow to link experimental observables to the density dependance of the symmetry energy
 → requires extensive comparison of a large variety of observables;
 → isospin sensitive quantities: isospin transport, isobaric cluster ratios (t/3He), etc...
 → single particle and multi-particle distributions and correlations.
- Symmetry energy is introduced as:
 → Direct input (Mean-field description)
 → Indirect consequence of specific nucleon-nucleon interaction
Heavy Ion Collisions

- Formation of exotic nuclei over a wide range of n/p asymmetry
- Terrestrial way to study transient states of nuclear matter over various ρ, P, T and J
- Relatively high E^*/A can be reached

Intermediate energies

- $15 \text{ AMeV} \leq E_{\text{inc}} \leq 100 \text{ AMeV}$
- Dissipative collisions
- Investigation of $\varepsilon_{\text{sym}}(\rho)$ in the sub-saturation density regime → Domain expected from model calculations

Transport model (ImQMD05)

$^{124}\text{Sn} + ^{124}\text{Sn} @ 50 \text{ AMeV}$

- Peripheral collisions
- Pre-equilibrium emissions
- Mixing
- Fragments formation
- Statistical decays

Zhang et al., PRC 85:024602
Isospin transport: isospin migration

Heavy Ion Collisions

- Formation of exotic nuclei over a wide range of n/p asymmetry
- Terrestrial way to study transient states of nuclear matter over various ρ, P, T and J
- Relatively high E^*/A can be reached

Intermediate energies

- $15 \text{ AMeV} \leq E_{\text{inc}} \leq 100 \text{ AMeV}$
- Dissipative collisions
- Investigation of $\epsilon_{\text{sym}}(\rho)$ in the sub-saturation density regime
 \rightarrow Domain expected from model calculations

Isospin migration

- ρ gradient
- Neutron-enrichment of the neck
- Related to $\frac{\partial \epsilon_{\text{sym}}(\rho)}{\partial \rho}$

Heavy Ion Collisions

- Formation of exotic nuclei over a wide range of n/p asymmetry
- Terrestrial way to study transient states of nuclear matter over various ρ, P, T and J
- Relatively high E^*/A can be reached

Intermediate energies

- $15 \text{ AMeV} \leq E_{\text{inc}} \leq 100 \text{ AMeV}$
- Dissipative collisions
- Investigation of $\epsilon_{\text{sym}}(\rho)$ in the sub-saturation density regime
 \rightarrow Domain expected from model calculations

Isospin diffusion

- Minimisation of the N/Z concentration gradient
 \rightarrow neutron/proton currents between proj/targ
- Linked to ϵ_{sym}

Heavy Ion Collisions

- Formation of exotic nuclei over a wide range of n/p asymmetry
- Terrestrial way to study transient states of nuclear matter over various ρ, P, T and J
- Relatively high E^*/A can be reached

Intermediate energies

- $15 \text{ AMeV} \leq E_{inc} \leq 100 \text{ AMeV}$
- Dissipative collisions
- Investigation of $\epsilon_{sym}(\rho)$ in the sub-saturation density regime
 \rightarrow Domain expected from model predictions

Isospin transport

- Competition between the isospin migration and diffusion
- Transport phenomena directly linked to ϵ_{sym}
- Depends on the time of interaction between projectile and target
 \rightarrow beam energy, impact parameter
- Requires:
 \rightarrow high isotopic resolution
 \rightarrow special attention to evaporation process
 \rightarrow evaluation of the interaction and dissipation time
INDRA-VAMOS: Setup

E503 experiment

$^{40,48}\text{Ca} + ^{40,48}\text{Ca} @ 35 \text{ AMeV}$

- **VAMOS**
 - Drift chambers
 - Focal plane
 - Ref. traj.
 - CsI(Tl) wall
 - Si-wall (Trigger)
 - Ionization chamber

- **INDRA**
 - Chlo-CsI(Tl)
 - Chlo-Si-CsI(Tl)
 - Beam axis
 - Target

- **Si-wall → Acq. Trigger**
- **Projectile identification (Z,A)**
 - $\theta_{LAB} \approx 2.5^\circ - 6.5^\circ$
 - $\varphi_{LAB} \approx 220^\circ - 320^\circ$
- **12 Bρ settings:**
 - $B\rho_0 \approx 0.661 - 2.220 \text{ T.m}$

- **14 rings (~300 identification modules)**
- **Identification**
 - $\rightarrow (Z,A)$ for Light Charge Particles ($Z \leq 2$)
 - $\rightarrow Z$ up to $Z \sim 25$
- **$\theta_{LAB} \approx 7^\circ - 176^\circ$**
- **Event characterization (b, E^*, ...)**
General properties of the recorded INDRA-VAMOS events

General properties

$^{48}\text{Ca} + ^{48}\text{Ca}$

![INDRA-VAMOS: General properties diagram](image.png)

Dissipative collisions

3 regions:
- \rightarrow LCP emissions around v_{CM}
- \rightarrow PLF and TLF from either side of v_{CM}

PLF (Vamos):
- $V_z \geq 6 \text{ cm/ns}$
- $\rightarrow V_z \sim v_{\text{proj}}$
- $\rightarrow Z \sim Z_{\text{proj}}$
N-richness of the PLF detected in VAMOS

Evaporative Attractor Line

\[^{48}\text{Ca}^{+48}\text{Ca} \rightarrow N/Z=1.4 \]
\[^{48}\text{Ca}^{+40}\text{Ca} \]
\[^{40}\text{Ca}^{+48}\text{Ca} \rightarrow N/Z=1.2 \]
\[^{40}\text{Ca}^{+40}\text{Ca} \rightarrow N/Z=1 \]

INDRA-VAMOS: Isospin diffusion

- ≠ evolution depending on the system:
 1) Projectile
 → number of available neutrons in the entrance channel
 2) Target
 → Isospin diffusion

- Initial N-Z not reached
 → Statistical decay
INDRA-VAMOS: Isospin migration

For a given range of Z_V:

- \[\left(\frac{\langle N \rangle}{\langle Z \rangle} \right)_{CP} = \sum_{Nevts} \sum_{\nu} \frac{N_{\nu}}{\sum_{Nevts} \sum_{\nu} Z_{\nu}} \]
- \(\nu = 2, 3 \) H, \(3, 4, 6 \) He, \(6, 7, 8, 9 \) Li, \(7, 9, 10 \) Be
- Neutron-enrichment if \(\left(\frac{\langle N \rangle}{\langle Z \rangle} \right)_{CP} > 1 \)

Neck of nuclear matter at mid-rapidity

Isospin migration

- \(\rho \) gradient
- Mid-rapidity n-enrichment
- Linked to \(\frac{\partial \epsilon_{sym}(\rho)}{\partial \rho} \)
Isotopic ratios

For a given range of Z_V :

- $\frac{\langle N \rangle}{\langle Z \rangle}_{CP} = \sum_{N_{\text{evts}}} \sum_{\nu} \frac{N_{\nu}}{\sum_{N_{\text{evts}}} \sum_{\nu} Z_{\nu}}$
- $\nu = ^2,^3\text{He}, ^3,^4,^6\text{He}, ^6,^7,^8,^9\text{Li}, ^7,^9,^{10}\text{Be}$
- Neutron-enrichment if $\frac{\langle N \rangle}{\langle Z \rangle}_{CP} > 1$

In the case of symmetric systems :

- \rightarrow mid-rapidity neutron-enrichment
- \rightarrow direct experimental measure of the isospin migration
Head-on collisions

- When the impact parameter decreases and the beam energy increases, the fragmentation may become more complicated than the former case...

- Illustration from $^{36}\text{Ar}+^{58}\text{Ni}$ central collisions @ 32, 40, 52, 63, 74, 84 and 95 AMeV

- Observed topology different from multifragmentation and vaporisation:
 - Break-up asymmetry in forward vs backward CM
 - Granular projectile fragmentation topology
Comparisons with BLOB simulations

Jet fragmentation in BLOB

• Boltzmann-Langevin One-Body:
 → Stochastic transport theory (3D)
 → Mean-field description
 → n-n collisions
 → Langevin-type fluctuations

• Symmetric (36Ar+36Ar or 58Ni+58Ni):
 → significant radial expansion
 → signature of multifragmentation and vaporization mechanisms

36Ar+36Ar and 58Ni+58Ni @ 74 AMeV with BLOB
(b varying uniformly from 0 to 1 fm)

Comparisons with BLOB simulations

Jet fragmentation in BLOB

- Boltzmann-Langevin One-Body:
 - Stochastic transport theory (3D)
 - Mean-field description
 - n-n collisions
 - Langevin-type fluctuations

- Symmetric (36Ar+36Ar or 58Ni+58Ni):
 - Significant radial expansion
 - Signature of multifragmentation and vaporization mechanisms

- 36Ar+58Ni:
 - Columnar jet formation in the forward sector relative to the biggest fragment
 - Since early time this jet experiences a density drop along longitudinal axis

Comparisons with BLOB simulations

Jet fragmentation in BLOB

- Boltzmann-Langevin One-Body:
 → Stochastic transport theory (3D)
 → Mean-field description
 → n-n collisions
 → Langevin-type fluctuations

- Symmetric (36Ar+36Ar or 58Ni+58Ni):
 → significant radial expansion
 → signature of multifragmentation and vaporization mechanisms

- 36Ar+58Ni:
 → columnar jet formation in the forward sector relative to the biggest fragment
 → since early time this jet experiences a density drop along longitudinal axis
 → a collisionless approach leads to a neck-like pattern instead

Comparisons with BLOB simulations

Jet fragmentation in BLOB

- Boltzmann-Langevin One-Body:
 - Stochastic transport theory (3D)
 - Mean-field description
 - n-n collisions
 - Langevin-type fluctuations

- Symmetric ($^{36}\text{Ar}+^{36}\text{Ar}$ or $^{58}\text{Ni}+^{58}\text{Ni}$):
 - Significant radial expansion
 - Signature of multifragmentation and vaporization mechanisms

- $^{36}\text{Ar}+^{58}\text{Ni}$:
 - Columnar jet formation in the forward sector relative to the biggest fragment
 - Since early time this jet experiences a density drop along longitudinal axis
 - A collisionless approach leads to a neck-like pattern instead

Comparisons with BLOB simulations

Jet fragmentation in BLOB

- Boltzmann-Langevin One-Body:
 - Stochastic transport theory (3D)
 - Mean-field description
 - n-n collisions
 - Langevin-type fluctuations

- Symmetric ($^{36}\text{Ar}+^{36}\text{Ar}$ or $^{58}\text{Ni}+^{58}\text{Ni}$):
 - Significant radial expansion
 - Signature of multifragmentation and vaporization mechanisms

- $^{36}\text{Ar}+^{58}\text{Ni}$:
 - Columnar jet formation in the forward sector relative to the biggest fragment

→ Projectile region = prediction intense volume-like fast break-up;
→ Target region = long time-scale surface-like emissions (evaporative).

Femtoscopy and correlation functions

- **Femtoscopy**:
 - Term used for estimating distances, lifetimes and densities on the femtosopic scale.

- **IMF-IMF (Z>2) correlation functions**:
 - Interferometry studies;
 - Allows to probe space-time properties of the collision products;
 - The shape of the correlation function is strongly affected by fragment emission time at small relative velocities (Coulomb anti-correlation).

\[1 + R(V_{\text{red}}) = C \cdot \frac{\sum Y_{\text{coinc}}(p_1, p_2)}{\sum Y_{\text{unco}}(p_1, p_2)} \]

Two-IMF coincident yield

\[V_{\text{red}} = \frac{V_{\text{rel}}}{\sqrt{Z_1 + Z_2}} \]

Approximation of the yields of two uncorrelated IMF (event mixing)

G. Verde, EPJA 30 (2006)

\[^{36}\text{Ar}^{58}\text{Ni} \text{ @ 40 AMeV with INDRA} \]

Backward (slow)

Forward (fast)

\[^{36}\text{Ar}^{58}\text{Ni, E/A=40 MeV, } b_{\text{red}} < 0.3 \]

\[\uparrow \text{ All} \]

\[\uparrow v_{\parallel} > v_{\text{cm}} \]

\[\uparrow v_{\parallel} < v_{\text{cm}} \]
Conclusion

- INDRA-VAMOS experiment allowed to probe the isospin transport phenomena, predicted by transport models, with 40,48Ca+40,48Ca peripheral collisions
 → experimental evidence of isospin diffusion and migration;
 → due to the use of VAMOS and the trigger conditions, complementary results can be accessed with INDRA-FAZIA.

- For more central collisions:
 → 36Ar+58Ni asymmetric collisions measured with INDRA show a particular topology that has not been explicitly addressed so far;
 → BLOB dynamical simulations evidenced the appearance of nuclear jets formation in the forward direction;
 → These collimated streams of clusters are expected to be at low-density;
 → Interplay of surface and volume instabilities.

- These predictions point to new detection systems measuring on a event-by-event basis:
 → isotopic identification;
 → angular correlations;
 → cluster coincidences.
Outlooks: Extension to INDRA-FAZIA campaigns

- Isospin transport:
 → INDRA-VAMOS drawbacks (normalization, trigger condition)
 → Effect of beam energy (density)?
 → Impact parameter estimation?
 → Complementary results with INDRA-FAZIA (see Caterina Ciampi talk)

- Correlation function:
 → Improved angular resolution with FAZIA;
 → Fix and establish procedures for the study of correlation functions (event mixing, effect of global observables and conservation laws) using existing INDRA data;
 → Extension to INDRA-FAZIA

- Extensive comparisons with different models to link the observations to transport properties:
 → BLOB
 → QMD
 → AMD (see Catalin Frosin talk) ...
Back-up slides: imbalanced ratios

\[R^x_{\nu_i} = \frac{2(x^M - x^{eq})}{(x^H - x^L)} \]

\[x^{eq} = \frac{x^H + x^L}{2} \]

where:
- \(x = \) observable sensitive to isospin transport
- \(x = +/- 1 \rightarrow \) no diffusion
- \(x = 0 \rightarrow \) diffusion with complete equilibrium
Jet fragmentation in BLOB

- Boltzmann-Langevin One-Body:
 - Stochastic transport theory (3D)
 - Mean-field description
 - n-n collisions
 - Langevin-type fluctuations

- Symmetric (36Ar+36Ar or 58Ni+58Ni):
 - Significant radial expansion
 - Signature of multifragmentation and vaporization mechanisms

- 36Ar+58Ni:
 - Jet formation of fast-streaming low-density matter
 - This density drop also triggers isospin effects

36Ar+58Ni @ 40 AMeV with BLOB

Taylor-Young development around $\delta=0$:

$$
\epsilon(\rho, \delta) = \epsilon(\rho, \delta=0) + \epsilon_{sym}(\rho) \cdot \delta^2 + \ldots
$$

$$
\epsilon_{sym} = \frac{1}{2} \left. \frac{\partial^2 \epsilon(\rho, \delta)}{\partial^2 \delta} \right|_{\delta=0}
$$

Example of parametrization:

$$
\epsilon_{sym}(\rho) = \frac{C_{kin}}{2} \left(\frac{\rho}{\rho_0} \right)^{2/3} + \frac{C_{pot}}{2} \left(\frac{\rho}{\rho_0} \right)^\gamma
$$

Fermi gas

N-N interaction

Example: Second-order limited development around ρ_0:

$$
\epsilon_{sym}(\rho) = S_0 + \frac{L}{3} \left(\frac{\rho - \rho_0}{\rho_0} \right) + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2 + \mathcal{O} \left\{ \left(\frac{\rho - \rho_0}{\rho_0} \right) \right\}^3
$$

- L = 3ρ_0 $\left. \frac{\partial \epsilon_{sym}(\rho)}{\partial \rho} \right|_{\rho=\rho_0}$

 "Slope" parameter

- K_{sym} = 9ρ_0^2 $\left. \frac{\partial^2 \epsilon_{sym}(\rho)}{\partial^2 \rho} \right|_{\rho=\rho_0}$

 "Incompressibility" parameter
Particle ID

VAMOS

- ΔE-E → Z-identification:

- A-identification:

INDRA

- ΔE-E → Z-identification:

- Pulse-shape (slow/fast) CsI(Tl):

ΔE-channel Vs E_{CsI}

$Z=20$

ΔE-channel Vs A/Q
Particle ID

- **VAMOS**
 - ΔE-E → Z-identification:
 - Pulse-shape (slow/fast) CsI(Tl):
 - CsI(Tl) fast

- **INDRA**
 - ΔE-E → Z-identification:
 - Charge state Q ID:
 - Q=18+
 - Q=13+

Charge state Q ID

- E CsI (channel)
- Chamber à ionisation Si ~540 μm
- DC 1, DC 2
- Plan focal
- Reconstruction au plan focal
- Reconstruction au point cible
- A/Q
- θ LAB
- φ LAB
- B
- ρ B
- φ

Identification

- Z=20
- ΔE Si (channel)
- E CsI (channel)
- θ F
- φ F
- X, Y, 1, 2, 3, 4
- Q=18+
- Q=13+

Back-up slides: Particle ID with VAMOS
INDRA-VAMOS coupling: setup

E503 experiment

\[^{40,48}\text{Ca} + ^{40,48}\text{Ca} @ 35 \text{ AMeV} \]

[1] S. Pullanhiotan et al., NIM A 593
[3] M. Rejmund et al., NIM A 646

\[B \rho = \frac{\gamma m v}{Q} \]
E503 experiment

$^{40,48}\text{Ca} + ^{40,48}\text{Ca} @ 35 \text{ AMeV}$

« Software spectrometer » : trajectory reconstruction from focal plane to the target point using simulations

[1] S. Pullanhiotan et al., NIM A 593
[3] M. Rejmund et al., NIM A 646

Detection chamber

Focal plane

Drift Chamber 1

Drift Chamber 2

Ionization Chamber

(18)Si-wall
(80)CsI-Wall

Reference trajectory ($B\rho=B\rho_0$)
Backup slides: Particle identification

Particle ID with VAMOS

Drift Chambers

- DC$_1$
- DC$_2$

Ionisation Chamber

- ΔE
- $E_{\text{ToF (stop)}}$
- E_{res}

- Si: $\sim 540\mu m$
- CsI(Tl): $\sim 1\text{cm}$

Focal Plan

1. Reconstruction at focal plan
2. Reconstruction at target point

- Drift chambers
- Simulations (ZGOUBI)

Identification

- $A_E = \frac{E_{TOT}}{m_0(y-1)}$
- $A = \frac{B\rho}{3.107\beta}$

ToF: start = HF signal HF (cyclotron)
stop = Si signal
How to normalize the events?

- Beam intensity corrections → I_{beam}
- Dead Time corrections → DT
- Magnetic rigidity overlaps → δ
- VAMOS acceptance corrections:
 $$\epsilon_{geo}(\delta, \theta_{LAB}) = \frac{\Delta^2\Omega(\delta, \theta_{LAB})}{4\pi}$$
 - efficacité géométrique
 - angle solide effectif
 - $\delta = B\rho / B\rho_0$
 - Simulation of more than 10^6 trajectoires with Zgoubi to estimate $\epsilon_{geo}(\delta, \theta_{LAB})$

A weight $W(I_{beam}, DT, \delta, \theta_{LAB})$ is applied event-by-event.