Investigating the $\mathrm{N}=28$ shell closure below $\mathrm{Z}=20$ through ${ }^{47} \mathrm{~K}(\mathrm{~d}, \mathrm{p}){ }^{48} \mathrm{~K}$

C. Paxman ${ }^{1}$, A. Matta ${ }^{2}$, W.N. Catford ${ }^{1}$ \& the MUGAST-AGATA-VAMOS collaboration

${ }^{1}$ Department of Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom
2 Normandie Univ, ensicaen, unicaen, CNRS/IN2P3, LPC CAEN, 14000 CaEn, France

GANIL Colloque, 2021

Motivation

Experiment

Analysis

Why $\mathrm{N}=28$?
First magic number not replicated by just two-body NN [1].
[1] J.D. Holt et al., J. Phys. G 39, 085111 (2012)

Why $\mathrm{N}=28$?
First magic number
not replicated by just
two-body NN [1].
Weakens $\mathrm{Z}<20$ [2], gradual deformation.
[2] L.A. Riley et al., Phys. Rev. C 101, 059902 (2020)

$N=28$

Edited image based on "The Colourful Nuclide Chart"
people.physics.anu.edu.au/~ecs103/chart edward.simpson@anu.edu.au

Why $\mathrm{N}=28$?

First magic number not replicated by just two-body NN [1].

Weakens $\mathrm{Z}<20$ [2], gradual deformation.

Evidence 54 Ca is doubly-magic [3].

[3] D. Steppenbeck et al., Nature 502, 207 (2013)

$N=28$

Edited image based on "The Colourful Nuclide Chart"
people.physics.anu.edu.au/~ecs103/chart
edward.simpson@anu.edu.au

Why $\mathrm{N}=28$?

First magic number not replicated by just two-body NN [1].

Weakens $\mathrm{Z}<20$ [2], gradual deformation.

Evidence 54 Ca is doubly-magic [3].

[3] D. Steppenbeck et al., Nature 502, 207 (2013)

$N=28$

Edited image based on "The Colourful Nuclide Chart"
people.physics.anu.edu.au/~ecs103/chart
edward.simpson@anu.edu.au

Fig. 1 Emergence of $\mathrm{N}=34$ magic number. Figure from Ref. [3]. When $\pi f_{\frac{7}{2}}$ is occupied, $\nu f_{\frac{5}{2}}<\nu p_{\frac{1}{2}}$. When $\pi f_{\frac{7}{2}}$ is unoccupied, $\nu f_{\frac{5}{2}}>\nu p_{\frac{1}{2}}$.

Does this persist for isotopes $\mathrm{Z}<20$?

Why ${ }^{47} \mathrm{~K}(\mathrm{~d}, \mathrm{p})$?

${ }^{48} \mathrm{~K}$ is odd-odd \& wellpositioned.

$N=28$

Edited image based on "The Colourful Nuclide Chart"
people.physics.anu.edu.au/~ecs103/chart edward.simpson@anu.edu.au

Why ${ }^{47} \mathrm{~K}(\mathrm{~d}, \mathrm{p})$?

${ }^{48} \mathrm{~K}$ is odd-odd \& wellpositioned.

${ }^{47} \mathrm{~K}$ structure...

Abstract

Fig. 2 Proton orbital occupancy in ${ }^{38-51} \mathrm{~K}$ isotopes, figure from Ref. [4]. Note that ${ }^{47,49} \mathrm{~K}$ have $\pi\left(1 s_{\frac{1}{2}}\right)^{1}\left(0 d_{\frac{3}{2}}\right)^{4}$.

Fig. 3 Low lying states of ${ }^{44} \mathrm{P}$ will be dictated largely by $\pi\left(1 s_{\frac{1}{2}}\right) \otimes \nu\left(1 p_{\frac{3}{2}}\right)$, which are also populated by ${ }^{47} \mathrm{~K}(\mathrm{~d}, \mathrm{p})^{48} \mathrm{~K}$.
[4] J. Papuga et al., Phys. Rev. C 90, 034321 (2014)

Why ${ }^{47} \mathrm{~K}(\mathrm{~d}, \mathrm{p})$?

${ }^{48} \mathrm{~K}$ is odd-odd \& wellpositioned.

${ }^{47} \mathrm{~K}$ structure...
$\ldots \pi\left(1 s_{\frac{1}{2}}\right)^{1}, \pi\left(0 d_{\frac{3}{2}}\right)^{4}$

- Predictive of ${ }^{46} \mathrm{Cl}$ and ${ }^{44} \mathrm{P}$ structure.
- Informative about $\nu(f p)$ states.

Motivation

Experiment

Fig. 4 AGATA-VAMOS coupling (Ref. [5]) with inlay showing AGATA-MUGAST coupling (Ref. [6]).

Overview

- March 2021
- GANIL-SPIRAL1+
- ${ }^{47}$ K RIB
- $7.7 \mathrm{MeV} / \mathrm{nucl}$.
- $\approx 99.99 \%$ pure
- $\approx 5 \times 10^{5} \mathrm{pps}$
- $0.5 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{CD}_{2}$ target
- MUGAST + AGATA + VAMOS campaign
[5] E. Clement et al., NIM. A 855, 1-12 (2017).
[6] M. Assié et al., NIM. A 1014, 165743 (2021).

Fig. 4 AGATA-VAMOS coupling (Ref. [5]) with inlay showing AGATA-MUGAST coupling (Ref. [6]).

Overview

- March 2021
- GANIL-SPIRAL1+
- ${ }^{47}$ K RIB
- $7.7 \mathrm{MeV} / \mathrm{nucl}$.
- $\approx 99.99 \%$ pure
- $\approx 5 \times 10^{5} \mathrm{pps}$
- $0.5 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{CD}_{2}$ target
- MUGAST + AGATA + VAMOS campaign
[5] E. Clement et al., NIM. A 855, 1-12 (2017).
[6] M. Assié et al., NIM. A 1014, 165743 (2021).

Detectors

MUGAST

- GRIT + MUST2
- Upstream DSSD's for protons
- Downstream \& 90° MUST2 detectors
- High-quality particle spectroscopy
- Viewed through
 gates on...

Detectors

MUGAST

- GRIT + MUST2
- Upstream DSSD's for protons
- Downstream \& 90° MUST2 detectors
- High-quality particle spectroscopy
- Viewed through
 gates on...

Detectors (cont.)

AGATA

- 12 ATC's $\rightarrow 36$ HPGe crystals
- Precise γ-ray gating and $\gamma-\gamma$ coincidence
- $\mathrm{FWHM} \approx 0.01 \mathrm{MeV}$ @ 1.8 MeV
- Timing gate
- Reject reactions on C

Motivation

Experiment

Analysis

Fig. 6 Sinusoidal variation in energy across MUGAST trapezoids due to beam offset.

Corrections

Beam off-centre \rightarrow MUST2 shift to negative X, MUGAST misaligned...

Thin target \rightarrow expected vs detected particles.

Aligning 0.143 MeV peak in MUGAST detectors:

- $\mathrm{X}=-3.92 \mathrm{~mm}$
- $\mathrm{Y}=+0.06 \mathrm{~mm}$
- $\mathrm{Z}=+1.06 \mathrm{~mm}$
- $\mathrm{T}=0.187 \mathrm{mg} / \mathrm{cm}^{2}$

Fig. 7 Experimental elastic scattering data, compared to various optical models.

Corrections

Beam off-centre \rightarrow MUST2 shift to negative X, MUGAST misaligned...

Thin target \rightarrow expected vs detected particles.

Using elastics to determine target thickness:

- $\mathrm{CD}_{2}=0.18(1) \mathrm{mg} / \mathrm{cm}^{2}$
- $\mathrm{CH}_{2}=0.01(1) \mathrm{mg} / \mathrm{cm}^{2}$
$\therefore \mathrm{T}=0.19(2) \mathrm{mg} / \mathrm{cm}^{2}$
Methods agree, 37% of nominal.

Fig. 8 Comparison of the 0.143 MeV excited state, isolated through γ-gating, as seen by the individual MUGAST detectors (left, $a \& b$) and the sum of the detectors (right, $a \& b$).

Level scheme

Analysis performed using nptool.

Triple-coincidence is vital.
Currently...

- Six new states
- Nine new transitions
- Two tentative spin-parities

$$
\begin{aligned}
& \text { Believed to arise from } \\
& \pi\left(1_{\frac{s}{2}}\right) \otimes \nu(f p) .
\end{aligned}
$$

Fig. 9 Preliminary level scheme derived from this work. New states/decays shown in red.

Fig. 10 Proton energy against lab angle, where the kinematic lines correspond to states in the final nucleus. Inlay shows predicted diff. cross sections (TWOFNR).

To do:

- More states (especially 4-4.6 MeV).
- Differential cross sections.
- Spectroscopic factors.
- Branching ratios.

Thank you!

C. Paxman ${ }^{1}$, W.N. Catford ${ }^{1}$, A. Matta ${ }^{2}$, D.T. Doherty ${ }^{1}$, M. Assié ${ }^{3}$, E. Clément ${ }^{4}$, A. Lemasson ${ }^{4}$, D. Ramos ${ }^{4}$, F. Galtarossa ${ }^{3}$, L. Achouri ${ }^{2}$, D. Ackermann ${ }^{4}$, D. Beaumel ${ }^{3}$, L. Canete ${ }^{1}$, P. Delahaye ${ }^{4}$, J. Dudouet ${ }^{5}$, B. FernándezDomínguez ${ }^{6}$, D. Fernández-Fernández ${ }^{6}$, F. Flavigny ${ }^{2}$, C. Fougères ${ }^{4}$, G. de France ${ }^{4}$, S. Franchoo ${ }^{3}$, J. Gibelin ${ }^{2}$, N. Goyal ${ }^{4}$, F. Hammache ${ }^{3}$, D.S. Harrouz ${ }^{3}$, B. Jacquot ${ }^{4}$, L. Lalanne ${ }^{3}{ }^{4}$, C. Lenain ${ }^{2}$, J. Lois-Fuentes ${ }^{6}$, T. Lokotko ${ }^{2}$, F.M. Marqués ${ }^{2}$, I. Martel ${ }^{7}$, N.A. Orr 2, L. Plagnol ${ }^{2}$, D. RegueiraCastro 6, N. de Séréville ${ }^{3}$, J.-C. Thomas ${ }^{4}$, A. Utepov ${ }^{4}$.
${ }^{1}$ Univ. Surrey
${ }^{2}$ LPC Caen
${ }^{3}$ IJCLab
${ }^{4}$ GANIL
${ }^{5}$ IP2I Lyon
${ }^{6}$ Univ. Santiago de Compostela
7 Univ. Huelva

