3-Dimensional Scintillation Dosimetry for Small Irradiation Fields Control in Protontherapy

E. Mainguy¹, J-M . Fontbonne², <u>A-M . Frelin¹</u>, D . Lebhertz³, C . Moignier³, J . Thariat^{2,3}, A. Vela³

¹Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DRF CNRS/IN2P3, 14076 Caen, France

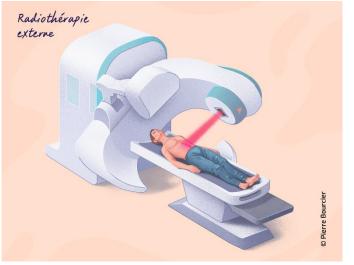
²LPCC - Laboratoire de physique corpusculaire de Caen, 14000 Caen, France

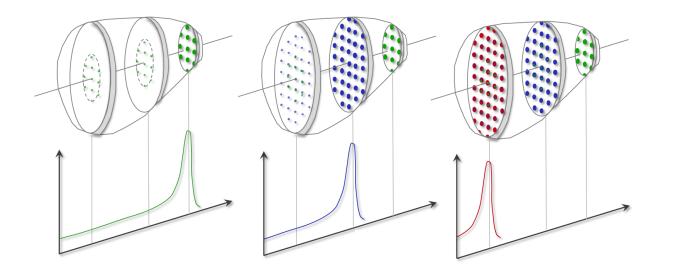
³CLCC François Baclesse, 14000 Caen, France

Le projet PMRT est financé par

Cancer treatment and Radiation therapy

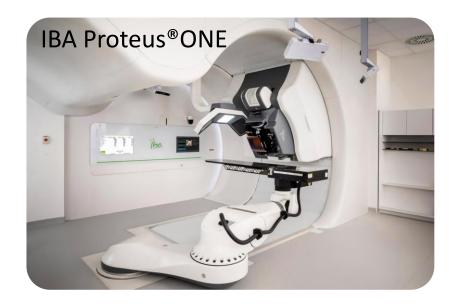
- $\sim 399\;000$ new cancer cases in France in 2017
- ~ 213 000 patients/year treated by radiotherapy




Image credit: INCa web site

Dose deposition by ionizing radiations

Development of advanced treatments


Proton therapy Treatment planning and delivery in pencil beam scanning (PBS)

MC based Treatment Planning System

Calculation of the **number of beams**, **energy** (E), **position** (X,Y), **dose delivered** by each beam

to achieve dose constraints (high dose in the tumor, low dose in organ at risks) 30/09/2021 XXIInd COLLOQUE GANIL - A-M. Frelin

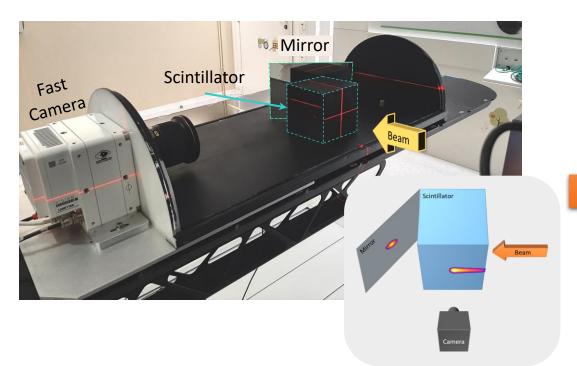
- Beam frequency = 1 kHz
- Pulse = 7 μs
- Maximum energy = 230 MeV
- Gantry 220°
- Treatment table: 6 degrees of freedom

Treatment control in proton therapy Case of the small tumors (< 27 cm³)

Under $3 \times 3 \times 3$ cm³ :

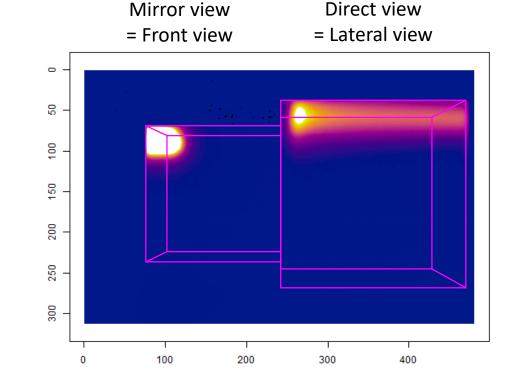
• Treatment Planning System uncertainties

⇒ 3D dose verifications


- Control detectors \rightarrow 2D measurements (time consuming) and/or inadequate spatial resolution

⇒ Need of a new proton therapy dosimeter

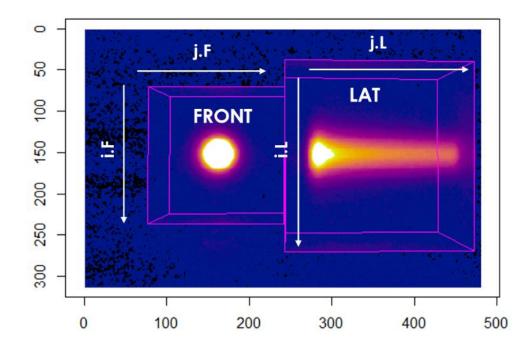
- 3D measurements
- Spatial resolution < 1 mm
- 2 % uncertainty on the dose delivered by the treatment



Development of a proton therapy dosimeter Experimental setup

 $10 \times 10 \times 10$ cm³ BC412 plastic scintillator Ultra fast camera: up to 5200 fps @ 1200 × 800 px Synchronized to the beam (delivered at 1 kHz)

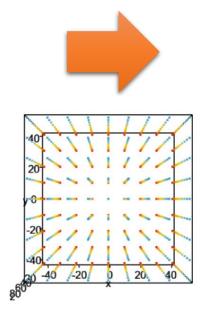
 \leftarrow logical signal provided by the Proteus[®]ONE

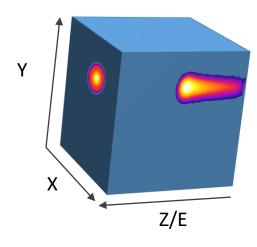

Recording of each beam

2 operating modes:

⇒ Measurement/control of each beam characteristics

⇒ 3D dose distribution of the entire treatment


Development of a proton therapy dosimeter *Spatial calibration*

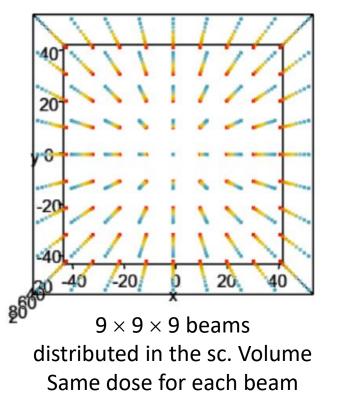


Intensity of the **0.1% most intense pixels** (in gray levels) in the Front and Lateral views Corresponding **positions** (i, j) (in pixels)

 \approx Bragg peak in both views

Calibration

Reference irradiation:


 $9 \times 9 \times 9$ beams distributed in the sc. Volume Same dose for each beam

Beam characteristics:

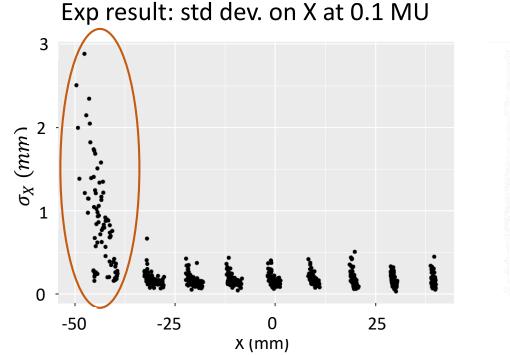
- Position (X, Y)
- Depth / Energy
- Delivered dose

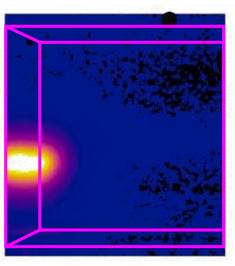
Measurement of beam characteristics Performances evaluation – Repeatability measurements

10 repetitions of the **reference irradiation**

→ Standard deviation for <u>each</u> beam characteristics: position, depth and delivered dose

 σ_X , σ_Y , σ_Z , σ_D/D


Repeatability at \neq delivered doses: **0.02**, **0.1** and **1** Monitor Unit (MU)*


smallestrepresentative ofHigh doseprogrammable dosetreatment dosesGood S/N ratio

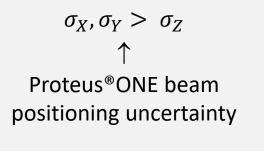
* A monitor unit (MU) is a measure of machine output from a clinical accelerator for radiation therapy. By convention, one monitor unit equals 1 cGy of absorbed dose in water under specific calibration conditions.

Measurement of beam characteristics Performances evaluation – Repeatability measurements

First analysis: Increased dispersion for the **81 leftmost beams**

Combined effects:

- Optical perspective and reflections (← dosimetry system)
- Delivered beam position uncertainty (
 irradiation system)


Not representative of the detector response (especially for irradiation fields < 3 × 3 cm²)

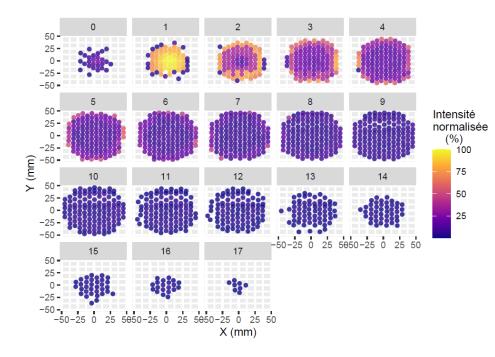
ightarrow Exclusion from the results of the 81 leftmost beams in this study

Measurement of beam characteristics Performances evaluation – Repeatability measurements

Average value and standard deviation of the variations for the 648 remaining beams \rightarrow In agreement with objectives (1 mm, 2 %)

	1 MU	0.1 MU	0.02 MU
σ _x (μm)	103 ± 44	169 ± 75	342 ± 293
σ _γ (μm)	96 ± 35	152 ± 42	341 ± 122
σ _z (μm)	42 ±19	75 ± 28	$\textbf{176} \pm \textbf{91}$
σ _D /D (%)	$\textbf{0.30}\pm\textbf{0.17}$	$\textbf{0.77} \pm \textbf{0.26}$	$\fbox{2.44\pm0.89}$

detector performance $\sim \sigma_Z$ < 300 μm


Very low dose beams

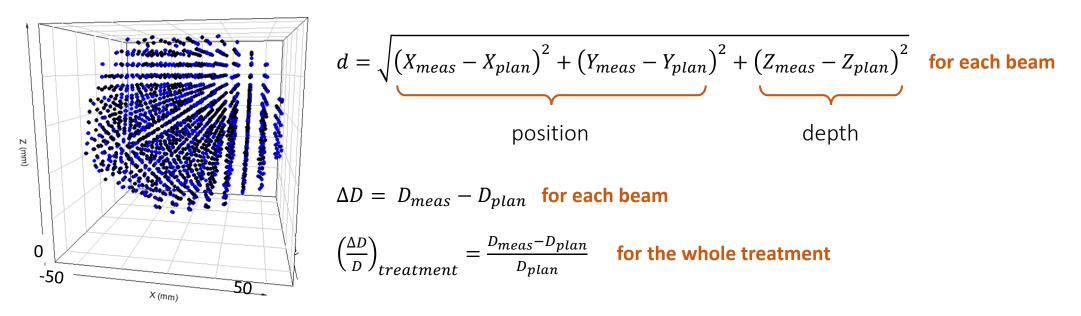
 \rightarrow small fraction of the whole treatment

Expected improvement \leftarrow calib. / Dk signal subtraction / img analysis

Measurement of beam characteristics Verification of the characteristics of planned beams

Treatment planning of an homogeneous dose distribution of 0.8 Gy in a sphere of 8 cm \varnothing located inside the scintillator cube

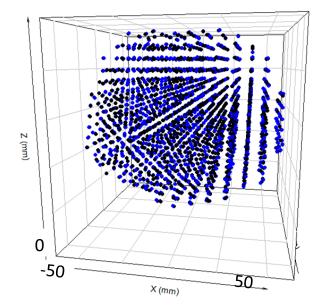
 $\sim 1~800$ beams divided into 18 energy layers, $0.02 < D < \sim 1~MU$



Agreement between planned and delivered beams ?

Measurement of beam characteristics Verification of the characteristics of planned beams

Comparison between planned and measured beam characteristics:


100

Measurement of beam characteristics Verification of the characteristics of planned beams

Averaged distance and dose difference over the 1 800 beams

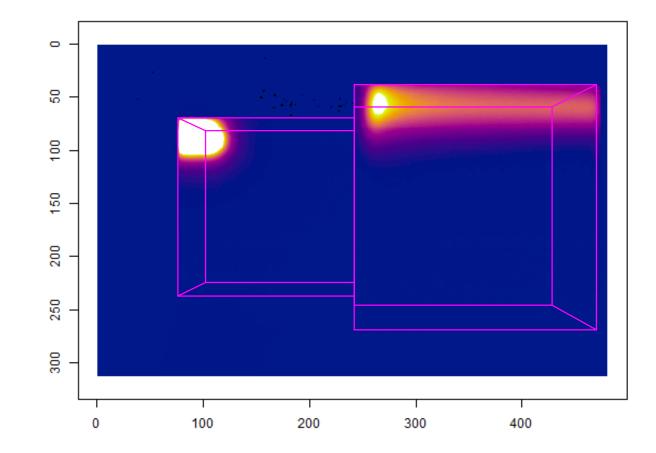
100

 $\bar{d} = (375 \pm 408) \,\mu m$ $\overline{\Delta D} = (-3.37 \pm 5.47).\,10^{-3} \,MU$ $\left(\frac{\Delta D}{D}\right)_{treatment} = -1.54 \,\%$

Biases correction:

- Leftmost beams treatment
- Overfitting calibration ?
- Significant contribution of beams with D < 0.1 MU
 - \rightarrow Dark subtraction
 - \rightarrow Images analysis

Differences in treatment tolerance (1 mm, 2 %)


Conclusion and perspectives

Development of a new dosimetry system for proton therapy

- Very promising results:
 - Spatial resolution < 300 μm
 - Dose uncertainty < 3.4 % (beam by beam)
- Ongoing improvement image treatment and analysis
 - Dark subtraction
 - Image analysis \rightarrow Better position and light intensity measurement
 - Calibration
- Toward 3D dosimetry
 - Scintillation quenching correction
 - Optical effects specific correction
 - Pencil beam characterization

• ...

Thank you for your attention

